copy folder SR


ls /scratch/b.eds006/RST
if [ -z “$1” ]
echo “Need n parameter”
exit 1
srcfile=”/scratch/b.eds006/RST/$1_in_1″ destfile=”/nfshome/store02/users/b.eds006/matlab/SR_QScan_DV/RST/$1_in_1″
echo $srcfile
echo $destfile
cp -r $srcfile $destfile
echo “Files copied”


Microsphere Nanoscopy References

Endnote Format: Amer J Physics

1 E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv Microskop. Anat. 9, 413 (1873).

2 Lord Rayleigh, “XXXI. Investigations in optics, with special reference to the spectroscope,” Lond.Edinb.Dubl.Phil.Mag. 8 (49), 261-274 (1879).

3 CM Sparrow, “On Spectroscopic Resolving Power,” The Astrophysical Journal 44, 76 (1916).

4 William V Houston, “A compound interferometer for fine structure work,” Phys. Rev. 29 (3), 478 (1927).

5 G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento, Suppl. 9, 426-435 (1952).

6 B. Richards and E. Wolf, ” Electromagnetic diffraction in optical systems . II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358 (1959).

7 D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ladmda/20,” Applied Physics Letters 44 (7), 651-653 (1984).

8 D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Applied Physics Letters 44, 651-653 (1984).

9 S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Optics letters 19 (11), 780-782 (1994).

10 M. Born and E. Wolf, Principles of optics. (Cambridge University Press, UK, 1999), 7 ed.

11 Robert C. Dunn, “Near-Field Scanning Optical Microscopy,” Chemical Reviews 99, 2891-2928 (1999).

12 Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” Jetp Lett. 72 (9), 457-459 (2000).

13 J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).

14 Zhigang Chen, Allen Taflove, and Vadim Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Optics Express 12, 1214 (2004).

15 Z. G. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Optics Express 12 (7), 1214-1220 (2004).

16 Z. G. Chen, A. Taflove, and V. Backman, “Photonic nanojets,” Ieee Antennas and Propagation Society Symposium, Vols 1-4 2004, Digest, 1923-1926 (2004).

17 B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl Phys a-Mater 79 (4-6), 747-751 (2004).

18 R. J. Potton, “Reciprocity in optics,” Reports on Progress in Physics 67, 717-754 (2004).

19 N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308 (5721), 534-537 (2005).

20 N Fang, H Lee, C Sun, and X Zhang, “Sub–Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534-537 (2005).

21 A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J Opt Soc Am A 22 (12), 2847-2858 (2005).

22 C. H. Li, G. W. Kattawar, P. W. Zhai, and P. Yang, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Optics Express 13 (12), 4554-4559 (2005).

23 X. Li, Z. G. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Optics Express 13 (2), 526-533 (2005).

24 Z.B. Wang, National University of Singapore, 2005.

25 Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Optics Express 14 (18), 8247-8256 (2006).

26 M. Gerlach, Y. P. Rakovich, and J. F. Donegan, “Nanojets and directional emission in symmetric photonic molecules,” Optics Express 15 (25), 17343-17350 (2007).

27 W. Guo, Z.B. Wang, L. Li, Z. Liu, B.S. Luk’yanchuk, P.L Crouse, and D.J. Whitehead, presented at the The 8th International Symposium on Laser Precision Microfabrication, 24-28 April 2007, University of Vienna, Vienna, Austria, 2007 (unpublished).

28 W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90, 243101 (2007).

29 Zhaowei Liu, Hyesog Lee, Yi Xiong, Cheng Sun, and Xiang Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

30 Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315 (5819), 1686-1686 (2007).

31 Paul R Selvin and Ha Taekjip, Single-molecule techniques: a laboratory manual. (Cold Spring Harbor Laboratory Press, 2007).

32 G. X. Chen, M. H. Hong, Y. Lin, Z. B. Wang, D. K. T. Ng, Q. Xie, L. S. Tan, and T. C. Chong, “Large-area parallel near-field optical nanopatterning of functional materials using microsphere mask,” Journal of Alloys and Compounds 449 (1-2), 265-268 (2008).

33 P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Optics Express 16 (10), 6930-6940 (2008).

34 Wei Guo, Zeng Bo Wang, Lin Li, Zhu Liu, Boris Luk’yanchuk, and David J Whitehead, “Chemical-assisted laser parallel nanostructuring of silicon in optical near fields,” Nanotechnology 19, 455302 (2008).

35 L. Li, W. Guo, Z.B. Wang, Z. Liu, D. J. Whitehead, and B.S. Luk’yanchuk, “Large Area Laser Nano-Texturing with User Defined Patterns”, in The 1st International Conference on Nanomanufacturing (nanoMan2008) (Singapore, 2008).

36 X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat Mater 7 (6), 435-441 (2008).

37 Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, B. S. Lukyanchuk, and Z. B. Wang, “Near-field enhanced femtosecond laser nano-drilling of glass substrate,” Journal of Alloys and Compounds 449 (1-2), 246-249 (2008).

38 A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanos 6 (9), 1979-1992 (2009).

39 B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annual review of biochemistry 78, 993-1016 (2009).

40 Zengbo Wang, Tsung Sheng Kao, and Nikolay Zheludev, presented at the CLEO/Europe-EQEC, 2009 (unpublished).

41 Qian Zhao, Ji Zhou, Fuli Zhang, and Didier Lippens, “Mie resonance-based dielectric metamaterials,” Materials Today 12, 60-69 (2009).

42 Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt Commun 283 (23), 4775-4781 (2010).

43 C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Optics Express 18 (16), 16805-16812 (2010).

44 Costas M. Soukoulis and Martin Wegener, “Optical Metamaterials— More Bulky and Less Lossy,” Science 330, 1633-1634 (2010).

45 Z.B. Wang, J. Naveen, L. Li, and B.S. Luk’yanchuk, “A Review of Optical Near-Fields in Particle/Tip-assisted Laser Nanofabrication,” P.I.Mech. Eng. C-J. Mec. 224, 1113-1127 (2010).

46 D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring Photonic Nanojets from Microsphere Arrays by Femtosecond Laser Ablation of Thin Films,” J Nanosci Nanotechno 11 (10), 9129-9135 (2011).

47 Xiang Hao, Cuifang Kuang, Xu Liu, Haijun Zhang, and Yanghui Li, “Microsphere based microscope with optical super-resolution capability,” Applied Physics Letters 99 (20), 203102 (2011).

48 Ashfaq Khan, Zengbo Wang, Mohammad A Sheikh, and Lin Li, “Laser Sub-Micron Patterning of Rough Surfaces by Micro-Particle Lens Arrays,” International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) 1 (3), 9 (2011).

49 Ashfaq Khan, Zengbo Wang, Mohammad A. Sheikh, David Whitehead, and Lin Li, “Laser micro/nano patterning of hydrophobic surface by contact particle lens array,” Appl. Surf. Sci. 258, 774-779 (2011).

50 M. S. Kim, T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Applied Physics Letters 98 (19), 191114 (2011).

51 Yongmin Liu and Xiang Zhang, “Metamaterials: a new frontier of science and technology,” Chemical Society Reviews 40, 2494 (2011).

52 Costas M. Soukoulis and Martin Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 524-530 (2011).

53 Zengbo Wang, Wei Guo, Lin Li, Boris Luk’yanchuk, Ashfaq Khan, Zhu Liu, Zaichun Chen, and Minghui Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun 2, 218 (2011).

54 Z. B. Wang and L. Li, “White-light microscopy could exceed 50 nm resolution,” Laser Focus World 47 (7), 61-64 (2011).

55 Jon Cartwright, “Defeating diffraction,” Physics world 25 (5), 29-34 (2012).

56 A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Applied Physics Letters 101 (14), 141128 (2012).

57 D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun 3, 1205 (2012).

58 D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Optics Express 20 (1), 128-140 (2012).

59 E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat Mater 11 (5), 432-435 (2012).

60 A. Vlad, I. Huynen, and S. Melinte, “Wavelength-scale lens microscopy via thermal reshaping of colloidal particles,” Nanotechnology 23 (28), 285708 (2012).

61 V. Yannopapas, “Photonic nanojets as three-dimensional optical atom traps: A theoretical study,” Opt Commun 285 (12), 2952-2955 (2012).

62 H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21 (2), 2434-2443 (2013).

63 X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H.Zhang, H. Li, and L. Tong, “Far-field super-resolution imaging using near-field illumination by micro-fiber,” Appl. Phys. Lett. 102, 013104 (2013).

64 Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev, “Planar Photonics with Metasurfaces,” Nat Mater 339, 1232009 (2013).

65 L. A. Krivitsky, J. J. Wang, Z. B. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci Rep-Uk 3, 3501 (2013).

66 S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, “Immersed transparent microsphere magnifying sub-diffraction-limited objects,” Applied optics 52 (30), 7265-7270 (2013).

67 Lin Li, Wei Guo, Yinzhou Yan, Seoungjun Lee, and Tao Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light: Science & Applications 2 (9), e104 (2013).

68 Z.B. Wang, Y. Zhou, and Boris Luk’yanchuk, “Near-field focusing of dielectric microspheres: Super-resolution and field-invariant parameter scaling,” arXiv:1304.4139v2 (2013).

69 Hui Yang, Norman Moullan, Johan Auwerx, and Martin A. M. Gijs, “Super-Resolution Biological Microscopy Using Virtual Imaging by a Microsphere Nanoscope,” Small 10 (9), 1712–1718 (2013).

70 V.N. Astratov and A. Darafsheh, “Methods and systems for super-resolution optical imaging usinghigh-index of refraction microspheres and micro-cylinders,,” US patent application 2014/0355108 A1 published on December 4, 2014 (2014).

71 Arash Darafsheh, Nicholaos I. Limberopoulos, John S. Derov, Dennis E. Walker, and Vasily N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Applied Physics Letters 104 (6), 061117 (2014).

72 Seoungjun Lee, Lin Li, and Zengbo Wang, “Optical resonances in microsphere photonic nanojets,” Journal of Optics 16 (1), 015704 (2014).

73 V. M. Sundaram and S. B. Wen, “Analysis of deep sub-micron resolution in microsphere based imaging,” Applied Physics Letters 105 (20) (2014).

74 Zengbo Wang, “Improvements in and Relating to Lenses,” PCT/GB2014/052578 (priority date: 2013-AUG-23) (2014).

75 Y. Yan, L. Li, C. Feng, W.Guo, S.Lee, and M.H.Hong, “Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum,” ACS Nano 8 (2), 1809-1816 (2014).

76 Hui Yang, Norman Moullan, Johan Auwerx, and Martin A.M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712-1718 (2014).

77 Nanfang Yu and Federico Capasso, “Flat optics with designer metasurfaces,” Nat Mater 13, 139-150 (2014).

78 Kenneth W. Allen, Navid Farahi, Yangcheng Li, Nicholaos I. Limberopoulos, Dennis E. Walker, Augustine M. Urbas, Vladimir Liberman, and Vasily N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Annalen der Physik 527 (7-8), 513-522 (2015).

79 Shandra J. Corbitt, Mathieu Francoeur, and Bart Raeymaekers, “Implementation of optical dielectric metamaterials: A review,” Journal of Quantitative Spectroscopy and Radiative Transfer 158, 3-16 (2015).

80 Arash Darafsheh, Consuelo Guardiola, Averie Palovcak, Jarod C Finlay, and Alejandro Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Optics letters 40 (1), 5-8 (2015).

81 Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Characteristics of photonic jets from microcones,” Opt Spectrosc+ 119 (5), 849-854 (2015).

82 Thanh Xuan Hoang, Yubo Duan, Xudong Chen, and George Barbastathis, “Focusing and imaging in microsphere-based microscopy,” Optics express 23 (9), 12337-12353 (2015).

83 Jacob B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nature Nanotechnology 10, 2-6 (2015).

84 B. S. Luk’yanchuk, N. V. Voshchinnikov, R. Paniagua-Dominguez, and A. I. Kuznetsov, “Optimum Forward Light Scattering by Spherical and Spheroidal Dielectric Nanoparticles with High Refractive Index,” Acs Photonics 2 (7), 993-999 (2015).

85 I. V. Minin, O. V. Minin, and Y. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Annalen Der Physik 527 (7-8), 491-497 (2015).

86 I. V. Minin, O. V. Minin, V. Pacheco-Pena, and M. Beruete, “Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode,” Optics letters 40 (10), 2329-2332 (2015).

87 Feifei Wang, Hok Sum Sam Lai, Lianqing Liu, Pan Li, Haibo Yu, Zhu Liu, Yuechao Wang, and Wen Jung Li, “Super-resolution endoscopy for real-time wide-field imaging,” Optics express 23 (13), 16803-16811 (2015).

88 H. Yang, M. Cornaglia, and M. A. M. Gijs, “Photonic Nanojet Array for Fast Detection of Single Nanoparticles in a Flow,” Nano Letters 15 (3), 1730-1735 (2015).

89 Nikolay I. Zheludev, “Obtaining optical properties on demand,” Science 348, 973-974 (2015).

90 Haier Zhu, Bing Yan, Zengbo Wang, and Limin Wu, “Synthesis and super-resolution imaging performance of refractive-index-controllable microsphere superlens,” J. Mater. Chem. C 3, 10907-10915 (2015).

91 Alexander N. Cartwright, Dan V. Nicolau, Dror Fixler, V. N. Astratov, A. V. Maslov, K. W. Allen, N. Farahi, Y. Li, A. Brettin, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and M. Rothschild, “Fundamental limits of super-resolution microscopy by dielectric microspheres and microfibers”, in Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII (2016).

92 W. Fan, B. Yan, Z. B. Wang, and L. M. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci Adv 2 (8) (2016).

93 Saman Jahani and Zubin Jacob, “All-dielectric metamaterials,” Nature Nanotechnology 11, 23-36 (2016).

94 Jinxing Li, Wenjuan Liu, Tianlong Li, Isaac Rozen, Jason Zhao, Babak Bahari, Boubacar Kante, and Joseph Wang, “Swimming Microrobot Optical Nanoscopy,” Nano Letters 16, 6604-6609 (2016).

95 Yu Chao Li, Hong Bao Xin, Hong Xiang Lei, Lin Lin Liu, Yan Ze Li, Yao Zhang, and Bao Jun Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light: Science and Applications 5, 1-9 (2016).

96 C. Y. Liu and C. C. Li, “Photonic nanojet induced modes generated by a chain of dielectric microdisks,” Optik 127 (1), 267-273 (2016).

97 J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. B. Wang, “Spider Silk: Mother Nature’s Bio-Superlens,” Nano Letters 16 (9), 5842-5845 (2016).

98 Feifei Wang, Lianqing Liu, Peng Yu, Zhu Liu, Haibo Yu, Yuechao Wang, and Wen Jung Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci Rep-Uk 6, 24703 (2016).

99 F. F. Wang, L. Q. Liu, H. B. Yu, Y. D. Wen, P. Yu, Z. Liu, Y. C. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nature Communications 7 (2016).

100 Z.B. Wang, “Microsphere super-resolution imaging”, in Nanoscience, edited by John Thomas Paual O Brien (Royal Society of Chemistry, 2016), Vol. 3, pp. 193-210.

101 Hui Yang, Raphaël Trouillon, Gergely Huszka, and Martin AM Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett 16 (8), 4862-4870 (2016).

102 A. Bezryadina, J. X. Li, J. X. Zhao, A. Kothambawala, J. Ponsetto, E. Huang, J. Wang, and Z. W. Liu, “Localized plasmonic structured illumination microscopy with an optically trapped microlens,” Nanoscale 9 (39), 14907-14912 (2017).

103 Ivan Kassamakov, Sylvain Lecler, Anton Nolvi, Audrey Leong-Hoï, Paul Montgomery, and Edward Hæggström, “3D super-resolution optical profiling using microsphere enhanced Mirau interferometry,” Sci Rep-Uk 7 (1), 3683 (2017).

104 Boris S Luk’yanchuk, Ramón Paniagua-Domínguez, Igor Minin, Oleg Minin, and Zengbo Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow,” Optical Materials Express 7 (6), 1820-1847 (2017).

105 I. Mahariq, I. H. Giden, H. Kurt, O. V. Minin, and I. V. Minin, “Strong electromagnetic field localization near the surface of hemicylindrical particles,” Opt Quant Electron 49 (12) (2017).

106 Alexey V. Maslov and Vasily N. Astratov, “Optical nanoscopy with contact Mie-particles: Resolution analysis,” Applied Physics Letters 110 (26) (2017).

107 Fei Qin, Kun Huang, Jianfeng Wu, Jinghua Teng, Cheng‐Wei Qiu, and Minghui Hong, “A Supercritical Lens Optical Label‐Free Microscopy: Sub‐Diffraction Resolution and Ultra‐Long Working Distance,” Advanced Materials 29 (8), 1602721 (2017).

108 Zengbo Wang, “n=1.5 nano microsphere light focusing”, (2017), pp.

109 Zengbo Wang, “n=1.5 cylinder”, (2017), pp.

110 Bing Yan, Zengbo Wang, Alan L Parker, Yu-kun Lai, P John Thomas, Liyang Yue, and James N Monks, “Superlensing microscope objective lens,” Appl. Opt. 56 (11), 3142-3147 (2017).

111 Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” Journal of Optics 20 (6) (2018).

112 K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. Hong, B. Luk’yanchuk, and J. Teng, “Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications,” Adv. Mater. 30 (26), e1704556 (2018).

113 C. Y. Liu, O. V. Minin, and I. V. Minin, “First experimental observation of array of photonic jets from saw-tooth phase diffraction grating,” Epl-Europhys Lett 123 (5) (2018).

114 Liyang Yue, Oleg V Minin, Zengbo Wang, James N Monks, Alexander S Shalin, and Igor V Minin, “Photonic hook: a new curved light beam,” Optics letters 43 (4), 771-774 (2018).

115 L. Y. Yue, B. Yan, J. N. Monks, R. Dhama, Z. B. Wang, O. V. Minin, and I. V. Minin, “Intensity-Enhanced Apodization Effect on an Axially Illuminated Circular-Column Particle-Lens,” Annalen Der Physik 530 (2) (2018).

116 L. Y. Yue, B. Yan, J. N. Monks, R. Dhama, Z. B. Wang, O. V. Minin, and I. V. Minin, “Photonic Jet by a Near-Unity-Refractive-Index Sphere on a Dielectric Substrate with High Index Contrast,” Annalen Der Physik 530 (6) (2018).

117 Zengbo Wang and Boris Luk’yanchuk, “Super-resolution imaging and microscopy by dielectric particle-lenses”, in Label-Free Super-Resolution Microscopy, edited by Vasily Astratov (Springer, 2019).

118 M. W. Tang, X. W. Liu, Z. Wen, F. H. Lin, C. Meng, X. Liu, Y. G. Ma, and Q. Yang, “Far-Field Superresolution Imaging via Spatial Frequency Modulation,” Laser Photonics Rev 14 (11) (2020).