Aerosol Jet printing (AJP)

Company: https://www.sirris.be/aerosol-jet-printing

OPTOMEC: https://www.youtube.com/watch?v=m1YqgEGrbPQ

A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing

Abstract

Aerosol Jet Printing (AJP) is an emerging contactless direct write approach aimed at the production of fine features on a wide range of substrates. Originally developed for the manufacture of electronic circuitry, the technology has been explored for a range of applications, including, active and passive electronic components, actuators, sensors, as well as a variety of selective chemical and biological responses. Freeform deposition, coupled with a relatively large stand-off distance, is enabling researchers to produce devices with increased geometric complexity compared to conventional manufacturing or more commonly used direct write approaches. Wide material compatibility, high resolution and independence of orientation have provided novelty in a number of applications when AJP is conducted as a digitally driven approach for integrated manufacture. This overview of the technology will summarise the underlying principles of AJP, review applications of the technology and discuss the hurdles to more widespread industry adoption. Finally, this paper will hypothesise where gains may be realised through this assistive manufacturing process.

aerosol jet vs ink jet

Dear Mr. Jiang,in my opinion, there are three major differences between the aerosol jet and ink-jet printing:1. Print resolution;2. Viscosity of ink (suspensions);3. The distance from the printhead to the substrate.1. Aerosol printing allows to achieve a higher print resolution, namely, almost 2-4 times higher than inkjet.(Typical resolution printing with a of aerosol jet is 10 microns, several studies reported print resolution of about 5 microns, while using typical ink jet printing is a minimum resolution of 20-25 microns).2. Method of aerosol jet have less strict requirements for the viscosity of ink (suspension), and therefore, a larger amount of materials (including ceramics, metals, etc.) can be printed by using an aerosol jet.(Typical range of viscosity of ink (suspension) for aerosol jet is in the range from 0.5 to 2000 cP, while the ink jet ink is used with a low viscosity, typically less than 20 cP).3. Aerosol jet has a greater opportunity to vary the distance between the print head to the substrate. Therefore, it is possible to print on non-flat (non-smooth) substrates. In of aerosol jet is possible to create 3D-contacts that inkjet is practically impossible.(A typical distance between the print head to the substrate in the aerosol jet is 1-5 mm, while the ink jet distance is fixed and must be equal, typically 1 mm)However, it is worth noting that the technology of aerosol printing is a younger technology compared to inkjet printing, the 2000s and 1950s, respectively. Consequently, the ink-jet printing more advanced technology, and you have more opportunities to find how to use inkjet printing to apply those or other structures. I also think that inkjet printing is a cheaper way of printing.

For comparison, an industrial aerosol jet printer costs about 500k USD, and the industrial inkjet printer about 200k USD, although it can be found for 50k USD (as a reference).Regarding the possibilities to form structures using ceramic materials and aerosol jet, I recommend the following article: DOI: 10.1016/j.jpowsour.2012.09.094.The last article compared the aerosol jet and ink-jet printing can be found here: DOI: 10.1021/ie503636cSee also the attached picture (Aerosol jet vs Ink Jet.gif).

Cite19 Recommendati

Microsphere with hole

Issue 11, 2011Previous ArticleNext Article

One-step template-free synthesis of monoporous polymer microspheres with uniform sizes via microwave-mediated dispersion polymerization

Ming-Qiang Zhu,*aGan-Chao Chen,bcYun-Mei Li,bJun-Bing Fan,bMing-Feng Zhua  and  Zhiyong Tang*c Author affiliations

Abstract

One-step facile synthesis of monoporous polymer microspheres via microwave-controlled dispersion polymerization is introduced. This template-free method employing the dispersion polymerization of styrene under microwave irradiation induces directly the formation of uniform monoporous polymer microspheres, with controllable morphologies and sizes, which can be tuned by simply adjusting parameters for the synthesis. A comparison to conventional heating indicates that microwave irradiation plays a vital role in the formation of this novel morphology.

Graphical abstract: One-step template-free synthesis of monoporous polymer microspheres with uniform sizes via microwave-mediated dispersion polymerization

Deep Subwavelength-Scale Light Focusing and Confinement in Nanohole-Structured Mesoscale Dielectric Spheres

Yinghui Cao 1Zhenyu Liu 2Oleg V Minin 3 4Igor V Minin 5Affiliations expand

Free PMC article

Abstract

One of the most captivating properties of dielectric mesoscale particles is their ability to form a sub-diffraction limited-field localization region, near their shadow surfaces. However, the transverse size of the field localization region of a dielectric mesoscale particle is usually larger than λ/3. In this present paper, for the first time, we present numerical simulations to demonstrate that the size of the electromagnetic field that forms in the localized region of the dielectric mesoscale sphere can be significantly reduced by introducing a nanohole structure at its shadow surface, which improves the spatial resolution up to λ/40 and beyond the solid immersion diffraction limit of λ/2n. The proposed nanohole-structured microparticles can be made from common natural optical materials, such as glass, and are important for advancing the particle-lens-based super-resolution technologies, including sub-diffraction imaging, interferometry, surface fabrication, enhanced Raman scattering, nanoparticles synthesis, optical tweezer, etc.

win10企业长期支持版LTSC英文版

  1、64位版本:

  Windows 10 Enterprise LTSC 2019 (x64) – DVD (English)企业长期支持版LTSC

  文件名:en_windows_10_enterprise_ltsc_2019_x64_dvd_5795bb03.iso

  SHA1:615a77ecd40e82d5d69dc9da5c6a6e1265f88e28

  文件大小:4.03 GB

  发布时间:2019-03-15

  下载链接:

  ed2k://|file|en_windows_10_enterprise_ltsc_2019_x64_dvd_5795bb03.iso|4330432512|87DB27A367A86E56D62EA9ADA7F0D57B|/

  2、32位版本:

  Windows 10 Enterprise LTSC 2019 (x86) – DVD (English)企业长期支持版LTSC

  文件名:en_windows_10_enterprise_ltsc_2019_x86_dvd_892869c9.iso

  SHA1:88af607f1e752761577d21f2b7aa98692809bf66

  文件大小:2.82 GB

  发布时间:2019-03-15

  下载链接:

  ed2k://|file|en_windows_10_enterprise_ltsc_2019_x86_dvd_892869c9.iso|3026225152|C3812FEF081133559BEBC2654C5B2487|/

  如何激活长期支持版:

  长期支持版或长期服务版本身面向企业级用户,因此普通用户是无法直接从微软官方购买相关密钥进行激活。

  请注意: 从Windows 10 LTSB 2015/2016升级到LTSC 2019可能需要激活

  LTSC 2019安装激活教程

  1.首先本站下载镜像,下载后,完成安装

  2.打开cmd,复制命令

  slmgr -ipk M7XTQ-FN8P6-TTKYV-9D4CC-J462D

  到CMD对话框中并按回车。该激活密匙适用于Windows 10 LTSC 2019

Win10企业版LTSC下载 Win10 LTSC 2019原版企业版ISO镜像

  3.继续复制命令

  1.slmgr -ato

  到cmd窗口,点回车

Win10企业版LTSC下载 Win10 LTSC 2019原版企业版ISO镜像

  4.完成GVLK和KMS安装后,继续复制命令

  slmgr -ato

  到cmd窗口,点回车完成激活

Win10企业版LTSC下载 Win10 LTSC 2019原版企业版ISO镜像

前沿| Nature重磅:灵敏度提升98000倍,将HIV的诊断提早16天,正在进行新冠病毒试点!

荧光纳米金刚石(Fluorescent nanodiamonds,FND)中氮空位(nitrogen-vacancy,NV)缺陷的量子自旋特性,不仅在量子计算和通信领域应用广泛,其荧光性能也十分优异,包括高量子产率,无光闪烁或光漂白,高稳定以及低毒性等。在磁场量化、温度传感和生物标记等方向上也存在着广泛的应用。与中性(NV0)中心不同,NV中心的主要优势在于,其荧光可以通过自旋调控的方式进行选择性调节,从而在高背景环境中实现信号分离。传染病对全球健康构成了巨大挑战,而早期的诊断对于各种传染病有效的治疗和预防至关重要。目前对传染病病毒,如艾滋病病毒(HIV)或是新冠病毒(Covid-19)检测的方法较为繁琐,且需要较长时间。而与妊娠测试相似的纸基侧向流动测试(lateral flow assay, LFA)则是一种便捷的检测方法。其工作方式为将纸的一端浸入样本中,通过颜色(或荧光信号)的变化与否进行诊断。这种方法便捷且迅速,无需在实验室中处理结果。然而,当前基于纳米颗粒的生物传感器的灵敏度仍然欠缺。近日,英国伦敦大学的Benjamin S. Miller等与Rachel A. McKendry课题组合作将荧光纳米金刚石用作体外诊断的超灵敏标签,并通过微波调节发射强度与频域分析,将信号与背景荧光信号分离,突破了灵敏度的限制。基于该技术的低成本检测试纸,对生物素-亲和素模型的检测极限达到了8.2×10-19摩尔。在对HIV病毒检测实验中,比传统使用金纳米颗粒的检测灵敏度提高了98000倍。此外,由于HIV病毒相对于抗原和抗体能够更早的被检测到(分别提早7天与16天),因此与现有的基于实验室的核酸检测或即时蛋白检测相比,该技术提供了更早诊断的潜力。除了HIV病毒之外,该技术还适用于SARS-CoV-2病毒,并正在进行新冠病毒的试点。该研究以题为“Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics”的论文发表在最新一期的《Nature》上。

传统的生物传感检测中,荧光标记物受到来自于样品或试纸条的背景荧光的限制,大大阻碍了对低浓度的RNA或DNA的检测。在该研究中,研究人员主要利用了纳米金刚石中氮空位缺陷的量子特性。这种量子特性允许通过微波场调控的方式,对靶向分子发出的荧光信号进行调节,将信号固定在设定好的频率上,从而将目标荧光信号与背景信号分离,实现低浓度检测。

基于纳米金刚石的侧向流动测试

通过微波对纳米金刚石荧光信号进行调节光学结果表明,与金纳米颗粒相比,基于纳米金刚石的样品灵敏度提高了五个数量级(98000倍)(这意味着生成可检测信号所需的纳米颗粒数量要少得多)。且恒温核酸扩增耗时仅为10分钟(RNA增殖),这使得对艾滋病病毒的单分子检测成为现实。

基于纳米金刚石的侧向流动测试的检测极限第一作者Benjamin S. Miller博士表示,基于纸的测向流动测试避免了繁琐的实验室分析,显著提升了测试便捷性与及时性,同时大大降低了成本,这使得它们在资源贫乏地区特别适用。另一位通讯作者Rachel A. McKendry表示,该技术非常灵活,可以轻松适应其他疾病和生物标记物类型。当下研究团队正在进行该技术在新冠病毒检测方面的研究。Rachel A. McKendry相信,这种变革性的新技术将使患者受益,并保护人们免受传染病的侵害。

目前,该技术已经成功在实验室环境中进行了演示,但是,研究人员希望进行进一步的测试,以便可以使用智能手机或便携式荧光读取器读取结果。这意味着将来可以在资源较少的环境中进行测试,从而更便捷的进行病毒检测。

来源:高分子科学前沿

Intel Parallel Studio XE 2020其中的Intel Visual Fortran 与 Visual Studio2019安装与整合

from: https://my.oschina.net/u/2615680/blog/3154028

Hello James,

Plsuse the following information to download and activate it.

Account:

wbd8391997

Password:

Wbd398147815.

Serial number:

SF93-5MLJFJWH

https://registrationcenter.intel.com/en/products/postregistration/sf93-5mljfjwh/?sn=sf93-5mljfjwh&encEma=U3tdVrOFt/AHArVlnRggdmMEDRo57NeQfyfBHTsC5wUlqUtVuaym+9R/z7phHcaJssGswLr5mbdb/dX05yMqRw==&Sequence=2920463&dnld=t&pass=yes

Regards

Baidong

开写前先说明 有三大问题一定注意

1、Intel Visual Fortran(IVF)版本应当小于VS版本,具体可以看下载界面的描述,

2、安装要按照顺序来,即先安装VS再安装IVF

3、VS没有安装为Fortran预备环境的库,如下图所示,需要安装这个C++ 库。不能够仅是安装VS软件这个躯壳,因为 Fortran需要使用C++ 库,如果VS中没有事先安装这个库,则后续在进行Intel Parallel Studio XE 2020的安装时,不能将二者集成在一起。勾选后,详细信息默认即可

——————————————————————————————

下面说明下具体的安装流程

一、VS的下载与安装

进入VS官网,选择适合的版本,我用的是专业版

下载的是一个安装器,进行安装,勾选C++,详细信息默认即可

附Visual Studio 2019激活密钥
Visual Studio 2019 Enterprise
BF8Y8-GN2QH-T84XB-QVY3B-RC4DF
Visual Studio 2019 Professional
NYWVH-HT4XC-R2WYW-9Y3CM-X4V3Y

二、在Intel官网申请【学生版】Intel®ParallelStudioXE

2.1Intel®ParallelStudioXE根据开发需求提供的三个版本:

  1. Composer Edition
    英特尔®Parallel Studio XE 2018 Composer Edition包括业界领先的C ++和Fortran编译器,性能库,基于标准的并行模型和性能优化的Python。帮助程序员更快地构建快速代码。
  2. Professional Edition
    英特尔®Parallel Studio XE 2018专业版包含完整的编译器和库选择。使用性能分析器,优化矢量化,线程原型设计和内存和线程调试工具来构建您的功能。
  3. Cluster Edition
    英特尔®Parallel Studio XE 2018 Cluster Edition是我们的旗舰套件。它包括其他版本的所有工具,以及MPI库,MPI调优和分析工具以及高级集群诊断系统

2.2申请学生免费版详细过程

所需材料:

  1. 学生免费版申请页链接
  2. 一个可用的教育邮箱

申请流程

三、IVF(Intel Visual Fortran)的下载与安装

现在IVF都是集成到了Intel Parallel Studio XE之中,所以我们在官网进行下载。选择箭头所指

下载后,打开下载器,如果只需要IVF,取消其他选项,根据处理器类型,勾选即可

 该套件中包含的工具概述如下。

建立描述
英特尔®C ++编译器和英特尔®Fortran编译器英特尔®C和英特尔®Fortran优化编译器为现代处理器创建快速代码。他们使用最新的指令集,自动向量化代码来支持/利用更广泛的向量寄存器,并使用高度优化的并行模型,例如OpenMP *和Intel®TBB。编译器为最新的C,C ++和Fortran标准提供了广泛的支持。
英特尔®调试器扩展GDB 8.0用于本地调试英特尔®64体系结构系统上的应用程序。
英特尔®Python发行版通过这种面向性能的Python发行版,可为应用程序增压并加速核心计算包。此发行版解决了Python的基本性能挑战;通过针对英特尔的各种处理器和协处理器的全面优化,提供编译语言的速度。
英特尔®数学内核库(英特尔®MKL)英特尔®数学内核库(英特尔®MKL)提供了加速的数学处理和神经网络例程,可提高应用程序性能并减少开发时间。英特尔®MKL包括高度矢量化和线程化的线性代数,快速傅立叶变换(FFT),神经网络,矢量数学和统计例程。
英特尔®数据分析加速库(英特尔®DAAL)C ++,Java *和Python * API库针对所有数据分析阶段(从数据采集到数据挖掘和机器学习)的优化分析构建块进行了优化。工程高性能大数据应用程序必不可少的。
英特尔®线程构建基块(英特尔®TBB)AC和C ++模板库,用于创建高性能,可扩展的并行应用程序。英特尔®TBB随Parallel STL一起安装,Parallel STL是C ++标准库算法的实现,并支持执行策略。
英特尔®集成性能基元(英特尔®IPP)具有计算密集型功能的预优化构建基块,可帮助处理大型数据集问题和进行高性能计算。
英特尔®集成性能基元密码学(英特尔®IPP密码学)提供广泛的安全有效的加密算法实现。
分析描述
英特尔®顾问向量化优化和线程原型。在流程的向量化和线程化阶段使用此工具。
英特尔®检查器内存和线程调试器。使用此工具可以查找争用,僵局和非法内存访问。
英特尔®VTune™放大器性能分析器。在线程和带宽优化阶段以及高级矢量化优化中使用此工具。
规模描述
英特尔®MPI库高性能MPI库。
英特尔®跟踪分析器和收集器MPI通信性能分析器和正确性检查器。在MPI调整阶段使用此工具

点击NEXT进行安装

继续next出现协议,选择第一项也就是我同意

Intel Parallel Studio XE 2020图文安装激活教程

要求输入激活码时,可以1、破解激活 或 2、 用学生账户进行免费使用(在第二步注册学生账号完成后,邮箱会收到一个激活码)

继续进行安装就行了

Intel Visual Fortran 与 Visual Studio2019集成成功后,选择创建新项目,可以发现Fortran就在项目里面了

最后附IVF与VS兼容关系

Visual StudioParallel STLFortran

FLOATING-POINT PRECISION IN FORTRAN

Fortran is a numeric beast, which is exactly why its still popular amongst scientific programmers. Languages like C are still somewhat constrained when it comes to numerical precision. In C, a long double gets you…

Fortran 90 and beyond provides a kind parameter which can be used to specify precision of both reals and integers. Fortran uses the function selected_real_kind() to create a parameter of real type for kind. Inputs to this are precision and range. Here is an example:

integer, parameter :: dp = selected_real_kind(15, 307)
real (kind=dp) :: x, y

This produces a parameter, dp, used to define a double precision real with 15 significant digits, and an exponent range or 307. Single and quad precision can also be defined in a similar way:

integer, parameter :: sp = selected_real_kind(6, 37)
integer, parameter :: qp = selected_real_kind(33, 4931)

In Fortran 2008, the constants real32real64, and real128 can be used instead of selected_real_kind(). How does this work? Consider the following piece of Fortran code to calculate the repeating decimal 1.0/7.0. The answer should be 0.142857 142857… Note that the floating point numbers used have to be tagged as a specific kind (e.g. 1.0_dp), otherwise the outcome can be erroneous.

integer, parameter :: dp = selected_real_kind(15, 307)
real (kind=dp) :: d
d = 1.0_dp / 7.0_dp

What happens when we run it  in all three precisions?

   SP = 0.14285714924335479736328125000000000
   DP = 0.14285714285714284921269268124888185
   QP = 0.14285714285714285714285714285714285

The BOLD numbers show the precision of the number, with correct digits. The Underline numbers are those correct beyond the precision. Now compare this to C’s long double which is typically 80-bit extended precision. Here’s the C code:

long double d;
d = 1.0L / 7.0L;

Here’s the result:

0.1428571428571428571409210675491330277964