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Visualization in the virtual image formed by dielectric microparticles has been shown to enable the distinction of
objects that remain indistinguishable under direct observation. We perform the resolution analysis based on a full
two-dimensional simulation in the TE mode of optical image formation, taking into account the diffraction of par-
tially coherent light on the microparticle and the objects under study. The oscillating nature of optical resolution
is demonstrated depending on the size of the microparticle. The presence of strong resonances is observed in both
transmission and reflection modes. It is shown that as the size of the object decreases, the optical resolution tends to
the classical limit. An analytical estimate for the resolution criterion is presented. ©2025Optica Publishing Group. All
rights, including for text and datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Examining objects with the help of dielectric microparticles
allows one to resolve structures beyond the diffraction limit [1].
Various theoretical approaches have been proposed to explain
this phenomenon: light focusing [2], transforming evanescent
waves [3,4], resonant phenomena [5,6], source polarization [7],
the effect of secondary illumination [8–10], substrate reflection
[11], spatial coherence effects [12,13], and local enhancement
of the numerical aperture [14]. Among them, some works are
focused on modeling the propagation of radiation from a light
source through the object and the microparticle up to the sub-
sequent image formation [9,10,13,14]. In these models, the
objects are not point sources but have finite dimensions. Due to
computational complexity, such calculations are typically lim-
ited to the two-dimensional case. Experimental data confirm the
super-resolution effect in this configuration [15]. However, the
crucial question of whether a fundamental resolution limit of
far-field imaging exists remains unresolved. By considering a 2D
model in the TE mode, we examine the minimum achievable
resolution in virtual imaging formed by microparticles and its
dependence on particle size in both reflection and transmission.

Recently, we proposed a simulation method for microsphere-
assisted super-resolution phenomena based on the FDTD
(finite-difference time-domain) approach, which demonstrated
its feasibility [13]. However, this method is computationally
demanding. For a monochromatic light source with wave-
length �, the FEM (finite element method) is more efficient and

accurate. Therefore, the calculations are performed using the
FEM method implemented in the MATLAB Partial Differential
Equation Toolbox, utilizing the specialized “electromagnetic”
class of the “harmonic” type.

2. RESULTS

The system under study consists of a substrate and a dielectric
microcylinder with a refractive index of n = 1.46. The sample
is placed between the substrate and the microparticle. In the
reflection mode, it consists of two rectangular metallic objects
with a width of 0.25 �; in the transmission mode, the structure is
represented by slits of the same dimensions in a metallic screen.
The system is illuminated according to the Köhler scheme. An
overview of the calculation setup is shown in Fig. 1. Further
details are provided in Section 4.

To determine the optical resolution, we performed a series
of calculations for a fixed geometry system while varying the
distance between objects. The resolution was determined using
the classical bisection method.

1. Define the lower and upper resolution bounds as distances
S1 and S2, where the objects are unresolved and resolved,
respectively. By default, the resolution is assumed to be S2.

2. Next, we check whether the objects are distinguishable at
the midpoint distance S12 = (S1 + S2)/2. If the objects
are resolvable, we update the upper bound to S2 = S12;
otherwise, we set the lower bound to S1 = S12.
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Fig. 1. General calculation scheme (not to scale): (a) the reflection mode, (b) the transmission mode. PEC, perfect elector conductor; PML,
perfectly matched layer; 0 represents the wavefront reversal line for image formation.

Fig. 2. Image fields for different edge-to-edge object separations d. (a)–(c) the reflection mode; (d)–(f ) the transmission mode. The microparticle
radius is R = 4.5�. Cases (b) and (e) illustrate the minimal separation at which the objects can still be resolved. The white dots in (e) and (f ) indicate
the maximum field.

3. Repeat step 2 until the difference between the upper
and lower bounds becomes smaller than the predefined
accuracy, (S2 � S1) <accuracy. We set the accuracy to
0.01�.

As the initial values, we set S1 = 0 and S2 = 0.3�. If the
objects remain unresolved at S2 = 0.3�, the upper bound is
increased by 0.1� until the objects become distinguishable. In
Fig. 2, the image fields are presented for different edge-to-edge
object separations d at a microparticle radius of R = 4.5�, illus-
trating three cases: completely unresolved, barely resolved, and
fully resolved objects.

In some cases, the resolution condition is satisfied even with
zero separation (S2 = 0), indicating that the sphere does not
form an image that defines the object’s geometry. In such cases,
the resolution is considered indeterminate. These cases are
discussed in more detail later.

Figure 3 illustrates the dependence of optical resolution on
the microparticle radius R in the transmission and reflection
modes. To visualize the resonance peaks, we added more calcu-
lation points for the reflection mode, while in all other cases, the
calculation grid remained standard R = (4:0.005:5)�. Figure 3

also shows the resolution in free space, which slightly differs
from �/2 and is approximately 0.55�.

The calculations showed that the resolution in free space,
i.e., in the real image, is approximately the same for both
reflection and transmission geometries. However, for the
virtual image, i.e., when a microparticle is present, it differs
significantly. In most cases, the optical resolution surpasses the
free-space limit. We also considered critical illumination. In
this case, no significant changes were observed in the reflection
mode, whereas in the transmission mode, the results differed
considerably. Under critical illumination, the graph exhibits
rapid changes, which are attributed to coherent effects.

The graphs exhibit two types of distinctive features: the areas
of sharp resolution changes in Fig. 3 (reflection mode), while
Fig. 3 (transmission mode) shows discontinuities. The physical
origin of these features lies in the resonant field enhancement
inside the particle, where the amplitude significantly increases,
leading to the excitation of a whispering gallery mode. In
this regime, the field inside the particle forms distinct bright
maxima near its boundary [see Fig. 4(a)]. The characteristic
width of these sharp resolution changes or discontinuities is
approximately 1(R/�) = 0.05�.



Research Article Vol. 42, No. 10 / October 2025 / Journal of the Optical Society of America A 1629

Fig. 3. Dependence of the optical resolution in the virtual image on the microparticle radius R: reflection mode (red curve) and transmission mode
(blue curve). The black solid lines indicate the resolution in free space without the microparticle. At the discontinuity points in the graph for the
transmission mode, the resolution is undefined because the slits are distinguishable (i.e., the resolution condition is satisfied) at zero distance. The res-
olution in free space matches within the error margin (0.01�): 0.57� for the transmission mode and 0.56� for the reflection mode. To visualize the
resonance peaks, more calculation points were added for the reflection mode.

Fig. 4. (a)–(d) Near-field distributions in the reflection mode around sharp resolution changing at R/� = 4.06. (e)–(h) Image fields correspond-
ing to the cases shown in the images above. The white dot in (g) indicates the maximum field. Due to the emergence of this maximum, the optical
resolution significantly deteriorates to 0.74�. The maximum values of the near fields for (a)–(d) are related as 1:0.6:0.6:0.6. The bright stripes at the
microparticle boundary in (a) and (b) indicate the excitation of a whispering gallery mode.

Figure 4 shows the near-field distribution inside the particle
and the corresponding image field near the sharp resolution
changing point at R = 4.06� for the reflection mode. The
case of minimal resolution is illustrated in Fig. 4(a), where the
formal resolution reaches an extremely small value of 0.06� at
R = 4.055�, yet exhibits significant degradation under vari-
ations in the distance between the particles. When compared
to the case at R = 4.06�, where the resolution is d = 0.2�, the
image fields appear nearly identical. Thus, at such a small reso-
lution value, despite a threefold difference in particle separation,
the distance between the maxima in the image field remains
nearly unchanged. This suggests that the image field does not
precisely convey the geometry and spacing of the objects but
rather indicates whether one or two particles are located beneath
the microsphere. Such behavior is the characteristic of the
excitation of antisymmetric modes, a phenomenon noted in
Ref. [16].

The cause of the sharp resolution reduction in Figs. 4(c) and
4(d) can also be understood: it arises due to the formation of a
pronounced maximum above the geometric focus. As a result,

the formal resolution condition is no longer met, even though
two distinct stripes can still be observed below this maximum.

Consider the breakpoints in Fig. 3 (transmission mode). The
resolution at these points is undefined because the resolution
condition is satisfied even at zero distance between the slits. We
found such cases only in the transmission mode. Let us examine
this case in more detail using the breakpoint at R/� = 4.4 as an
example. At first glance, it might seem that the resolution con-
dition would continue to hold as the slit distance increases, but
this is not the case. When calculated for a distance of d = 0.1�,
these conditions are no longer met, and this trend persists up to
d = 0.2�, a value that can be estimated by interpolation from
the graph. Therefore, with some reservations, this value can be
considered the optical resolution in this case. Figure 5 illustrates
this behavior in more detail. This example highlights the need
to develop more general criteria for defining optical image
resolution in the presence of a microparticle.

The enhancement of the near field leads to an increased effect
of secondary illumination of the sample by the field circulating
inside the particle, which in turn results in the observed features.
To verify this hypothesis, we performed resolution calculations,
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Fig. 5. (a)–(d) Near-field distributions around the slits for R = 4.4�, corresponding to the breakpoints in Fig. 3 (transmission mode), with slit
distances d/� = 0, 0.1, 0.15, 0.2, respectively. (e)–(h) Image fields corresponding to the cases shown in the images above. Formal conditions for dis-
tinguishability are satisfied at d/� = 0; however, in reality, the slits are distinguishable only at d/� = 0.2. The maximum values of the near fields for
(a)–(d) are related as 1:0.4:0.4:0.4.

Fig. 6. (a) Dependence of the optical resolution in the point source model for free space (blue line) and in the presence of a microparticle (orange
curve). The optical resolution in free space is 0.52�, while in the case of a microparticle, it oscillates with a small amplitude around this value.
(b) Dependence of optical resolution on the object width (plates or slits) for a microparticle with R/� = 4.4. The red dashed line denotes the extrapo-
lated behavior in the limit of vanishing panel width, as direct calculation is impeded by the poor contrast of the image. The solid and dashed blue
curves represent analogous dependencies in the presence and absence of a substrate beneath the slits, respectively.

where the source was modeled as two incoherent point dipoles
represented as a uniformly distributed current within a cylinder
with a radius of 0.025�. The calculation geometry and model
exactly match those of the reflection mode case, meaning that we
effectively replaced the reflecting objects with point sources. In
this case, local field enhancement also occurs at the mentioned
points; however, it does not affect the emitted field of the source.
The optical resolution remains close to the theoretical limit of
0.5� and does not exhibit anomalies at these points, as shown in
Fig. 6(a).

It should be noted that to achieve a resolution of approxi-
mately 0.5� in the point source model, the calculation domain
was extended by 10� along the x axis. Otherwise, the resolution
would be limited to 0.6�. This difference is explained by the
increased numerical aperture, which enhances the collection
of field information. However, this extension does not affect
the results for the microsphere, as most of the rays passing
through the microsphere are confined within a limited cone
[14]. Moreover, only the x -component of the field was used in
image calculations.

A comparison of the results in Fig. 6(a) for the point source
model and those in Fig. 3 for the simulation model indicates that
the key factors enabling super-resolution are the interactions
between radiation and the investigated sample, as was noted to
some extent in Ref. [10]. According to the presented 2D analy-
sis, microparticle-assisted microscopy does not enhance optical
resolution in terms of resolving individual point sources beyond
the diffraction limit. A similar conclusion was drawn in our pre-
vious work [13], as well as in our theoretical analysis of optical
resolution from the perspective of the limited number of modes
excited within the microsphere [11]. This leads to the conclu-
sion that the distinguishability of objects depends not only on
the distance between them but also on their width. Figure 6(b)
illustrates this dependence at R/� = 4. The resolution tends to
�/2 when object width ! 0. For object sizes smaller than �/2,
an approximate resolution criterion for a microparticle in the
2D case for the TE mode is given by

d + w ⇡ �

2
, (1)
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where w is the characteristic size of the object under investiga-
tion, and d is the minimal distance (resolution value) between
adjacent objects. It should be noted that this estimate is quali-
tative. According to the data in Fig. 3, condition (1) is satisfied
with good accuracy for the average value: hdi + w = 0.48� in
the reflection mode and hdi + w = 0.51� in the transmission
mode. We also note that this linear trend of resolution approach-
ing �/2 is valid only outside resonant cases. For object sizes
larger than �/2, the optical resolution is almost independent
of the object size. At R/� = 4, it is approximately 0.15� in the
reflection mode and 0.2� in the transmission mode. It should
be noted that these values may vary for other R/� ratios. The
graph in Fig. 6(b) shows an almost linear reduction of the res-
olution for the reflection mode as the object width decreases.
Unfortunately, performing calculations for the reflection mode
in the limit width ! 0 was not possible due to low contrast.
However, interpolation of the results suggests a resolution of
0.44�, which is only slightly different from the point source
model, 0.47�, for the same R/�. In the transmission mode,
when a highly conductive material is considered, this issue does
not arise, and the calculations are performed down to a slit
width of 0.01�. To ensure adequate spatial resolution for small
slit widths, a mesh step of 0.001� was used in the slit region.
However, this limiting behavior is affected by the presence of a
substrate beneath the slits. Under oblique illumination, the field
distribution along the lower surface of the conductor exhibits
a characteristic pattern of alternating maxima and minima.
Antisymmetric modes are excited when the field has a maxi-
mum near one slit and a minimum near the other, resulting
in a ⇡ phase difference between the transmitted waves. As a
result, antisymmetric mode excitation occurs, producing an
image with a characteristic two-lobed pattern [16] that enables
the distinction between the studied structures. Since the dis-
tance between the field lobes depends on both the angle of
incidence and the refractive index of the material, the ultimate
resolution is determined by the refractive index of the substrate
on which the slits are placed. Consequently, the resolution
limit at width ! 0 in Fig. 6(b) for the transmission mode is
determined by the refractive index of the substrate.

3. DISCUSSION

The optical resolution enabled by a microparticle depends non-
linearly on its size. This dependence may vary depending on the
resolution criterion. In this study, we employ a method based
on identifying the global maximum within a specified region
around the geometric focus, which requires further clarification.

In the three-dimensional case, the resolvability of objects
can be assessed by analyzing the intensity distribution in the
focal plane. A structured intensity pattern that cannot result
from random interference indicates the presence of the resolv-
able objects. Therefore, the focal plane should be selected to
represent the geometry of the sample. In the two-dimensional
case, with a fixed observation plane, only a one-dimensional
field distribution Eim(x ) can be recorded, making it challenging
to directly correlate the observed intensity dip between maxima
with the sample’s geometry. If the geometry of the sample is
known a priori, the focal line y = y

image can be chosen to opti-
mally represent its structure. However, in microscopy, where the

goal is to investigate unknown objects with an undetermined
geometry, such an approach is not applicable.

For example, depending on the choice of y
image, the sam-

ple may be interpreted either as a single slit or as two separate
slits. The global maximum search eliminates this ambiguity.
Furthermore, the definition of the optical resolution limit
implies that if the distance between objects exceeds this thresh-
old, they must remain distinguishable. If the focal plane is
selected outside the global maximum, this condition may not be
satisfied.

An alternative approach is to assess resolution at a fixed
position of y

image, for example, in the region of the geometric
focus. However, due to significant aberrations introduced by the
microparticle, which cause all rays to converge at a single point,
this choice becomes somewhat arbitrary. In this study, we aim to
establish a resolution criterion that is both objective and robust.

Equation (1), which provides an estimate of the resolution
limit, applies to the two-dimensional case in the TE mode; its
validity in three dimensions has not been demonstrated so far.
The quantitative values can differ significantly between the 2D
and 3D cases. To confirm this result for the 3D case, one would
need to perform calculations similar to those shown in Fig. 6(b),
which is computationally challenging. The present work is
limited to 2D simulations; however, the presented model can
be directly extended to the 3D case. Thus, this study lays the
groundwork for future research.

4. MATERIALS AND METHODS

A. Image Field Calculation Approaches

There are several methods in the literature for calculating the
image field at micrometer scales. In this section, we briefly
describe them for the two-dimensional case. Let the field E be
generated by a certain coherent monochromatic source, which
we will refer to as the source field. The temporal dependence
takes the form ⇠e�i!t , which we will omit unless stated other-
wise. The source field can be associated with its corresponding
image field Eim according to the following formula:

Eim(r0) = �i

4

Z

0

⇥
G(n, r)E⇤ � E⇤(n, r)G

⇤
dl , (2)

where 0 is an arbitrary curve homotopic to an infinite line,
G = H

(1)
0 (k|r � r0|) is the Hankel function of the first kind,

and ⇤ denotes complex conjugation, k = 2⇡/�, r = @/@r, and
� is the wavelength. The complex conjugation of the source field
reverses the wave front, transforming the field from diverging
to converging to the source. Equation (2) can be rewritten in
Fourier space as follows:

Eim(r0) = 1
2⇡k

Z
k

�k

Ẽ
⇤
(kx , y0)e

�i(kx x�ky (y�y0))dkx , (3)

where Ẽ is the Fourier transform of the field E at y = y0, and
ky =

p
k2 � k2

x
. According to Eq. (3) and in accordance with

Abbe’s definition, the image field does not contain evanescent
harmonics with ky > k.

In the case when the source field is generated by scattering on
a microparticle, the fields Eim and E can be expanded in terms
of cylindrical functions. For the TM geometry (Ex = E y = 0),
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these expansions take the following form [17]:

E =
1X

l=�1
al Nl ,

Eim =
1X

l=�1
a

im
l

Rg N⇤
l
. (4)

For convenience, the field Eim is expanded using complex-
conjugated functions, Nl = e

il'
H

(1)
l

(k⇢)ez, H
(1)
l

is the Hankel
function of the first kind, and Rg denotes the extraction of the
regular part of the expression. Due to the linearity of Eqs. (2)
and (3), the column vectors of the expansion coefficients of the
source field (al ) and the image field (a im

l
) are related by a matrix

equation of the form
0

BBBB@

. . .

a
im
�1

a
im
0

a
im
1

. . .

1

CCCCA
= Aim

0

BBB@

. . .
a

⇤
�1

a
⇤
0

a
⇤
1

. . .

1

CCCA
. (5)

The components of the matrix Aim, which link the coef-
ficient an on the right-hand side with the coefficient a

im
m

on
the left-hand side of the expression, are given by (A

im)nm =
sinc((n � m)/2). This operator was first computed for the
three-dimensional case in Ref. [11]. In the two-dimensional
case, the calculations are analogous; for more details, see
Supplement 1.

For the TE geometry (Ez = 0), the fields E and Eim can be
similarly expanded using functions M = rot(N)/k. Due to the
linearity of this transformation, Eq. (5) and the components of
the matrix Aim remain unchanged.

If the source field is non-stationary, E = E(t), there are two
approaches to compute the corresponding time dependence
of Eim(t). In the first approach, the time dependence can be
expanded into a Fourier series. Then, by applying transfor-
mations [Eqs. (2)–(3)] to each component and performing
an inverse Fourier transform, the dependence Eim(t) can be
obtained.

The second approach involves the FDTD (finite-difference
time-domain) method [13]. In this method, the field sources are
explicitly defined at the grid nodes, and the field propagation in
space is computed using a finite-difference scheme in the time
domain. To ensure that the generated pulse corresponds to the
image field rather than the source field, the time dependence
must be reversed.

For the TM geometry, the setup of sources for generating the
image field is implemented as follows:

E
im
z

(x , y = yo , t + dt)

= E
im
z

(x , y = yo , t) + (Ez(x , y = yo + dy , �t)

� Ez(x , y = yo , �t))/dy + Ez(x , y = yo , �t)/dy , (6)

E
im
z

(x , y = yo + dy , t + dt)

= E
im
z

(x , y = yo + dy , t) � Ez (x , y = yo , �t) /dy , (7)

where y = y0 is the line on which the sources are defined, and dt

and dy are the time and spatial grid steps, respectively. A similar
approach can be applied in the TE geometry for each compo-
nent Ex , E y , or by defining the source through the magnetic
component Hz.

In our calculations, we used the FEM method, which allows
us to obtain the spatial distribution of the source field. For
this reason, we applied Eq. (2). The curve 0 was chosen as a
smooth, bell-shaped contour enclosing both the particle and
the surrounding space. Such a configuration captures all rays
emanating from the microsphere. If 0 is chosen as a straight
line, achieving the same result would require the line to be sig-
nificantly larger than the microsphere’s diameter, substantially
increasing the simulation domain. Similar optimizations were
performed in Ref. [9].

B. Calculation Setup

For accurate calculations, the mesh size in the source genera-
tion and object regions must be especially fine. The maximum
distance between mesh nodes was set to 0.066�, with further
refinement in the specified regions to 0.005�. Simulations
were conducted for microsphere sizes R = (4:0.005:5)� with a
refractive index of n = 1.46.

In the reflection geometry, the sample was composed of
rectangular perfect conductors with a width of 0.25� and a
height of 0.1�. For the transmission geometry, the sample was
represented by slits in an opaque screen of the same dimensions.
The entire structure was placed on a substrate with a refractive
index of n = 1.46.

The dimensions of the simulated region were (4.4R + 8�) ⇥
(2R + 5.9�). If the contact point between the microparticle
and the substrate is taken as the origin, the curve 0 is defined by
the following equation:

y = 3� + (2R + 0.2�)

✓
1 +

⇣
x

1.2R

⌘4
◆�1

.

This dependence ensures a 3� offset from the substrate
surface to avoid edge effects.

To ensure a physically accurate assessment of the resolution, it
is crucial to define the illumination conditions properly. In the
calculations, we used the Köhler illumination scheme, where
the sample is illuminated by incoherent plane waves at various
incident angles. Plane-wave illumination is confined within a
cone with a half-angle of 3⇡/8 (NA = 0.92), with an angular
step of ⇡/100, for both transmission and reflection geometries.

Figure 7 shows the near-field and the corresponding image
field in the absence of a microparticle at different object sep-
aration distances. The figure illustrates two representative
scenarios: zero spacing between adjacent object elements and
the minimal separation distance at which the object features
remain just resolvable.

C. Image Formation Algorithm by an Incoherent
Source and the Criterion of Resolution

The algorithm for calculating the image field for a spatially
incoherent source includes the following key steps: computing
the image field for a specific plane-wave incidence angle, varying
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Fig. 7. Real and image fields without a microsphere. The white curve represents the integration path 0, and the red double arrow line represents
the source injection line. The insets display the image field calculated for the area highlighted by the red square. (a), (b) The reflection mode, with
distances between objects d = 0 and d = 0.56�, respectively. (c), (d) The transmission mode, with distances between apertures d = 0 and d = 0.57�,
respectively.

Fig. 8. (a), (b) Near-field distribution in the reflection and transmission modes, respectively. Image field in the reflection mode with object separa-
tion of d = 0� (c), d = 0.18� (d). Image field in the transmission mode with a slit separation of d = 0� (e), d = 0.27� (f ). The white dots in (f ) indi-
cate the maximum field. The particle radius is R = 4.5�, n = 1.46. The white curve represents the integration path 0, and the red double arrow line
represents the source injection line.

the angle of incidence, and summing the intensity contributions
from all angles. The image field is computed using Eq. (2) in
a rectangular area centered at the geometric image position,
determined by the magnification formula n/(2 � n)R , with
dimensions (2.2R + 4) ⇥ 2R .

The resolution condition is defined as follows: let the maxi-
mum of the image intensity field distribution for x > 0 be at
point A1, and for x < 0 at point A2. The objects are considered
resolvable if the intensity at the midpoint A12 exhibits an 80%
dip relative to the maxima at A1 and A2 points.

In many cases, due to overlapping image fields from each
object, the maximum shifts toward the center, forming a single
peak above or below two distinct local maxima. If this central

maximum is excluded, the resolution criterion is satisfied, and
the objects (e.g., slits) can be considered resolvable. However,
such cases are not considered in the presented calculations,
meaning that the optical resolution is estimated conservatively,
or “from below.”

Figure 8 shows the near-field and the corresponding image
field for a microparticle with R = 4.5� at different object dis-
tances. The microparticle does not generate an image in the
same manner as in free space. In the case of a microcylinder, the
image appears as elongated bright stripes, whereas in free space,
the image is localized on a wavelength scale, as evident from the
comparison between Figs. 7 and 8.
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