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Abstract: Photonic hook is a high-intensity, bent light focus with a proportional curvature to the
wavelength of the incident light. Based on this unique light-bending phenomenon, a novel near-
field photonic switch by means of a right-trapezoid dielectric Janus particle-lens embedded in the
core of a planar waveguide is proposed for switching the photonic signals at two common optical
communication wavelengths, 1310 nm and 1550 nm, by using numerical simulations. The signals at
these two wavelengths can be guided to different routes according to their oppositely bent photonic
hooks to realise wavelength selective switching. The switching mechanism is analysed by an in-house
developed three-dimensional (3D) Poynting vector visualisation technology. It demonstrates that the
3D distribution and number of Poynting vector vortexes produced by the particle highly affect the
shapes and bending directions of the photonic hooks causing the near-field switching, and multiple
independent high-magnitude areas matched by the regional Poynting vector streamlines can form
these photonic hooks. The corresponding mechanism can only be represented by 3D Poynting vector
distributions and is being reported for the first time.

Keywords: photonic hook; optical switch; Poynting vector; vortex

1. Introduction

Switch is the most basic component to make, break, or divert the connection from
one conductor to another in a circuit. The conventional electronic switch is a solid-state
mechanical device, though the sensors can be used to automate it in certain working
environments. The concept of the switch can be used for signal processing and other
applications of modern communication technologies, and activation/deactivation of signals
and data routing are the major functions of a switch, sometimes called logic signal switch,
in here [1]. With the development of data technology and mobile computing, the optical
signal in the form of light replaced the electronic signal to become the mainstream method
of data transmission with the aid of optical fibres [2,3]. For this reason, a photonic switch
is developed to control the light (optical signals) propagation with high efficiency, and
its switching time is much faster than that of a conventional electronic switch, due to the
unparalleled speed of light [4,5]. In this field, wavelength switching is a technology used in
optical communication to select individual wavelengths of light and forward the selected
input light to the separate paths for specific data routing [6]. Meanwhile, many optical
fibres are optimised for the optical signals at wavelengths of 1310 nm and 1550 nm due
to their lower losses in the glass fibre [7]. Wavelength division multiplexing (WDM) and
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Dense WDM (DWDM) are the technologies that enable a number of separate optical signals
with different wavelengths to be transmitted in an optical fibre [8,9], but the sizes of these
devices limit their applications for the future photonic integrated circuits and lab-on-a-chip
devices. As an alternative, the planar dielectric waveguide, in the form of a dielectric film
(core) sandwiched between cladding layers, better applies to these integrated optoelectronic
devices due to a relatively simple and compact structure and the consequent production
advantages [10,11]. Theoretically, the optical signal can be fast and accurately transmitted
in the core of a planar waveguide relying on the total internal reflection occurring at the
interface between the core and cladding [12].

In this paper, a novel all-dielectric photonic switch is realised by the near-field light-
bending effect of photonic hook which is a curved and localised, high-intensity light
beam focused by a dielectric micro-particle [13]. When it was invented, it was the only
other instance of artificially bent light apart from the Airy beam [13,14]. Meanwhile, it is
highly related to the concept of photonic jet or can be directly understood as a photonic
jet asymmetrically shifting in optical phase due to difference in phase velocity caused by
regional refractive-index contrast. Typically, it is produced by the light focusing through a
dielectric right-trapezoid Janus microparticle with the asymmetry in geometrical shape and
internal refractive index from its prism end [14–16]. This wavefront curvature normally
appears in the shadow direction of the particle and significantly influence the electric
field distribution in that area. Minin et al. experimentally generated a photonic hook
in terahertz (THz) band for the first time using a relatively simple experimental setup,
meanwhile proving the proportional relationship between the wavelength of incident light
and curvature of photonic hook [15]. Based on this finding, Geints et al. raised the proofs-
of-concept of similar photonic switches, and herein, photonic hooks could function like
switching channels after passing several differently configurated dielectric particles, such as
the flipped prism, Janus bar, and off-axis Fresnel zone plate [17]. Moreover, most photonic
hooks are graphically represented by the distributions of electric field and Poynting vector
on the median section. This two-dimensional (2D) plot is sufficient to characterise the
complete shape and curvature of a photonic hook; however, it is difficult to analyse the
light-bending process and the physics behind the phenomenon because the influence of the
photonic energy that flows into the median section from other planes cannot be quantified,
even visualised [18]. Yue et al. developed a 3D mapping technology to track the power
flow (Poynting vectors) of a photonic jet focused by a spherical mesoscale micro-particle,
and the circulation and convergence of 3D Poynting vectors inside the dielectric particle
were demonstrated for the first time [19]. The same technology is used in this study to
solve the above issue.

In this article, we propose a novel photonic hook light-bending optical switch by
means of a conventional right-trapezoid-shaped dielectric particle embedded in the core of
a planar waveguide. The operation of signal switching at two communication wavelengths,
λ = 1310 and 1550 nm, are numerically simulated. Its setup and operating wavelengths
are designed for the applications of optical communication and are different from those
in [17]. The separation of switching channels for the signals at these two wavelengths is
demonstrated by the overall distribution of the electric field and profiles of the generated
photonic hooks. The corresponding simulation data is analysed by 3D Poynting vector
visualisation technology to deeply investigate the physics and mechanism of switching.

2. Results and Discussion
2.1. Concept and Modelling

The numerical model of the proposed photonic switch is built in the commercial finite
integral technique (FIT) software package, CST Microwave Studio (CST), which is widely
used for design and analysis of nanophotonic devices [19,20]. A right-trapezoid-shaped
particle with the refractive index of n = 2, which can be possibly constituted by the dielectric
materials with the similar refractive index, e.g., Boron nitride (BN), MICROPOSIT® S1800
photoresist (S1800), etc. (n ranges 1.9–2.1 in near-infrared band depending on thickness



Photonics 2022, 9, 154 3 of 12

and structure), is implanted in the facet of the quartz core of a planar waveguide with
n = 1.44 [21–23]. The difference of the refractive indexes for the particle material at the
wavelengths of 1310 nm and 1550 nm is neglected to simplify and standardise the models
for comparison purposes. The assumed planar waveguide is able to ideally approximate
the plane wave propagation and eliminate the interference for the transmitted light at
wavelengths of 1310 nm and 1550 nm, and the implanted particle with a small relative
dimension to the core (d/D ≤ 0.08, where d and D are the particle size and thickness of
the core of the planar waveguide, respectively) [24,25]. The sketch of this design is shown
in Figure 1a I and the diagrams of Figure 1a II and III illustrate the effect of a trapezoid
particle switching the incident lights with short and long wavelengths which are 1310 nm
and 1550 nm in this case. As a discussion of the proof of concept, the proposed photonic
hook switch could be fabricated using the technologies of plano-convex-microsphere (PCM)
lens laser nano-marking and two-photon polymerization (TPP) 3D printing (resolution of fs
laser wavelength) with two example materials—BN and S1800, respectively—aided by the
integrated high-precision piezo positioning stages and femtosecond (fs) lasers (positioning
resolution of the stage: 1 nm; minimum corner radius of the structure: ~100 nm) [26,27].
A PCM lens is a dielectric lens made up of a high-index microsphere integrated with a
plano-convex lens, which can deliver a high patterning resolution that is smaller than the
diffraction limit for a precision machining of the facet of the planar waveguide core in a
trapezoid shape by a fs laser [26]. TPP 3D printing is an additive fabrication technology to
create micro/nano features relying on the photoresist solidification only occurring at the fs
laser focus [27]. It can in situ fill the micro/nanosized photonic wires of dielectric material
layer by layer in the cavity created by PCM lens marking technology with a high degree of
design freedom.

For the simulation setup in CST, the core material with the refractive index of n = 1.44
is used to encapsulate the trapezoid particle as long as the flat end facing the background
medium of air (n = 1) with the open boundary condition (effect of Perfectly matched layers,
PML) along with x, y, and z directions to simulate the planar waveguide transmission and
photonic hook switching in the air. The incident plane wave is y-polarized and propagates
along z axis with the amplitude of 1 v/m. The trapezoid particle is placed as the prism
encountering the light in z direction. The short base, long base, height, thickness, and prism
angles of the trapezoid are 2.79 µm, 3.72 µm, 2.79 µm, 2.79 µm, and 71.57◦ in this design,
respectively. Furthermore, the frequency domain solver and tetrahedral meshing with
the average edge length of 188 nm (min. and max. edge lengths are 33 nm and 339 nm,
respectively; the approximate level of λ/7) are used in the model for adaptive refinement
of the simulation accuracy with the autonomous adjustment of mesh sizes on the surfaces
and edges of the geometries. The modelling diagram is shown in Figure 1b. The data
of the Poynting vector in the modelling space generated by CST is exported and then
independently processed by a MATLAB® programme to plot the contour of the Poynting
vector magnitudes in a certain plane and a full 3D distribution of the Poynting vector
streamlines entering the particle.

2.2. Switching and 2D Distributions

The dielectric particle in the proposed photonic switch design is individually irradi-
ated by the plane-wave lights (optical signals) at wavelengths of 1310 nm and 1550 nm, and
Figure 2 shows the corresponding distributions of the squared total magnitudes of electric
field (|E|2, E is electric field) and real part of complex Poynting vectors and their directions
(unit: V·A/m2) [28]. The distributions of |E|2 field in Figure 2a,b demonstrate a clear sepa-
ration of switching paths. In Figure 2a, the wavefront of 1310 nm light develops in a route
approaching the side of the trapezoid long base, which forms a downward photonic hook.
By contrast, the development of the photonic hook at the wavelength of 1550 nm is different
from that for 1310-nm-wavelength light. It propagates in an almost straight path with a
slightly upward curvature in the middle. The optical signals with the same wavelengths
should be switched to the routes in accordance with the photonic hook curvatures, and the
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distance between two routes in the shadow area of the particle can provide the dimensional
tolerance for the device fabrication. Theoretically, two ports can be set up in the middle of
the photonic hook routes to separately receive the corresponding signals.

Figure 1. (a) I, diagram of photonic switch design; II and III, principle of the proposed photonic
switching at two different wavelengths (b) CST modelling diagram.
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Figure 2. The distributions of the squared total magnitude of electric field (|E|2) for the irradiations
with wavelengths of 1310 nm (a) and 1550 nm (b). Two-dimensional Poynting vector distributions for
the irradiations with wavelengths of 1310 nm (c) and 1550 nm (d). The dimensions of the trapezoid
particle are short base, 2.79 µm; long base, 3.72 µm; height, 2.79 µm; thickness, 2.79 µm; and prism
angle, 71.57◦.

Figure 2c,d demonstrate the 2D Poynting vector distributions on the median section
for the models irradiated by the optical signals with wavelengths of 1310 nm and 1550 nm,
respectively. The asymmetric vortexes of Poynting vector streamlines are shown in the
dielectric particles in both figures. It is known that the photonic energy is able to flow in
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and out through these vortexes representing the singularities of Poynting vectors possibly
associated with topological charge [29–31]. Consequently, the layout of these vortexes
can influence the flow direction and intensity of Poynting vectors, especially in the areas
which are close to the particle boundaries. In Figure 2c for 1310 nm optical signal, the
prism of the dielectric particle leads the difference of phase velocity in the particle and
generates four vortexes at the output end of the particle, marked as v1, v2, v3, and v4
in the figure. Referring to the contour and flows of Poynting vectors in Figure 2c, it is
shown that two saddle points, outward spiral v1 and inward spiral v2, are in high-intensity
and low-intensity areas, respectively. This means that the photonic power flow passes
into the median plane at v1 position in the upper half of the particle, meanwhile exiting
the plane at v2 position in the lower half. The corresponding power flow exchange and
influences of vortexes v3 and v4 around the output area of the particle make the flows
of Poynting vectors in the generated photonic hook downward in general. However, it
is noted that the photonic hook of 1310-nm-wavelength irradiation is divided into two
high-magnitude areas (marked as a1 and a2) by a Poynting vector flow represented by a
pink arrow in Figure 2c. This separation is unusual and rare in the discovered photonic
hooks and different from the photonic hook in Figure 2a for the squared electric field
distribution. Rather than the downward photonic hook for the optical signal of 1310 nm
wavelength, a slightly upward photonic hook is created by the same trapezoid particle for
the incidence of 1550-nm-wavelength light. Two outward vortexes, v5 and v6 in Figure 2d,
shape the flow distribution and produce two narrow low-magnitude regions compressing
the high-magnitude area of the photonic hook in the middle.

2.3. 3D Poynting Vector Analysis

The physical mechanism behind the switching of the optical signals at wavelengths
of 1310 nm and 1550 nm and their field distributions in Figure 2 is further investigated by
the 3D Poynting vector visualisation analysis [19]. Compared to 2D analysis, 3D analysis
will provide additional information on light flows between different cross sections and also
the root of formation of optical vortexes and other singular points. All Poynting vectors
entering the dielectric particle from the prism end are tracked and then visualised by an
in-house developed MATLAB® programme. Due to a large amount of Poynting vector
data imported in the programme, the plotted Poynting vector streamlines are marked in
different colours to indicate the regions where they are tracked in the model. The colour
codes are distributed along the y axis to equally divide the whole modelling space into
three sections: the blue lines for the long-base section (−y direction), red lines for the
middle section (around 0 position on the y axis), and green lines for the short-base section
(+y direction). An overview of the 3D Poynting vector distribution for the model of 1310-
nm-wavelength irradiation is shown in Figure 3a. All Poynting vector streamlines flow
upwards from the prism end to the flat facet of the particle (vector arrows are hidden due
to a high density of streamlines); however, the presented features of 3D distribution are
significantly different from those in the 2D format shown in Figure 2. The Poynting vector
streamlines can continuously and freely develop in multiple directions and finally create a
tangled-roots-like structure. Figure 3b as a close-up view of the same model demonstrates
the locations of the vortexes with the insets of two important ones, v1 and v2, also indicated
in Figure 2. Except for the different spin directions of v1 and v2 shown in Figure 2, 3D
visualisation of Poynting vectors can graphically represent the orientations of v1 and v2
and fully indicate this difference in Figure 3b. It is shown that the centre and spin-orbit of v1
is approximately perpendicular to the z axis and faces upward in -z direction, meanwhile,
the same features are generally in the direction of 45◦ to the x axis for v2. In addition, the
inner and outer circles of v1 are in red and green, respectively, which means the photonic
energy can flow to the middle and upper parts of the particle and modelling space through
this vortex using multiple routes.
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Figure 3. Overview (a) and the rotated view (b) of 3D Poynting vector distribution for the model
of 1310 nm irradiation with the colour codes of streamlines: blue lines for long-base section
(−y direction), red lines for middle section (around 0 position on y axis), and green lines for short-base
section (+y direction). Insets in (b): Outward vortex v1 and Inward vortex v2.
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The proposed switch enables the selection of the propagation routes for the optical
signals at wavelengths of 1310 nm and 1550 nm, as shown in Figure 2, due to the opposite
bending directions of photonic hooks. This phenomenon is unusual for two electromagnetic
irradiations with such a small wavelength gap in the field of photonic hook study. This
is mainly attributed to the separation of two high-magnitude areas of Poynting vectors
as a1 and a2 shown in Figure 2c for the irradiation at the wavelength of 1310 nm. The
corresponding contour seems to not perfectly match with the flow direction and density
of Poynting vectors in 2D Poynting vector distribution (Figure 2c), especially for the gap
between a1 and a2. Nevertheless, it can be properly explained by 3D Poynting vector
analysis in this case. Here we use a 2D Poynting vector distribution of the median yz plane
(x = 0) in greyscale as a screen to divide the 3D Poynting vector visualisation model for
the 1310-nm-wavelength irradiation into +x segment and −x segment, as shown in the
diagram in Figure 4a. View 1 (+x segment visible) and view 2 (−x segment visible) are
defined as two observation angles to separately represent two segments of 3D Poynting
vector distributions without allowing perspective in such a setup, as shown in Figure 4b,c.
In these two figures, the profiles of the downward photonic hook and the high-magnitude
areas, a1 and a2, are portrayed by black solid lines and yellow dashed lines, respectively. It
is found that the profiles of a1 and a2 high-magnitude areas can be sequentially matched by
the dense Poynting vector streamlines in the regions where are close to the median yz plane
of x = 0 in +x segment (view 1) and −x segment (view 2), respectively. The gap between a1
and a2 shown in Figure 2c is attributed to this collective effect, and it leads to the unique
downward photonic hook jointed by two high-magnitude areas for the irradiation at the
wavelength of 1310 nm and spatially ensures optical isolation with the photonic hook
(switching route) of 1550-nm-wavelength signal.

Figure 4. Cont.
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Figure 4. (a) Diagram of view 1 and view 2 segments and 3D Poynting vector distributions for
(b) view 1 +x segment and (c) view 2 −x segment of the model with the irradiation at the wavelength
of 1310 nm. Orientations of the particle in Figure 4b,c are reversed due to the change of frames of
references for the observers in view 1 and view 2 as shown in Figure 4a.

Figure 5a,b illustrate the overview and close-up views of 3D Poynting vector distri-
bution for the model of 1550-nm-wavelength irradiation. Compared to the distributions
for the model of 1310-nm-wavelength irradiation shown in Figure 3, the Poynting vector
streamlines in Figure 5 are less swirling in the trapezoid particle and more straight in the
volume of the generated photonic hook, which reflects a smaller number of vortexes shown
in Figure 5. Two key vortexes, v5 and v6, are indicated in Figure 5 as well. The photonic
hook of the irradiation at a longer wavelength of 1550 nm appears in the region with the
maximum density of Poynting vector streamlines, basically filling the central volume of
the modelling space. These features are in accordance with the 2D Poynting distribution
on the median yz plane for the same model shown in Figure 2d, which induces an almost
straight, slightly upward photonic hook. Therefore, it is noted that the difference of spatial
location of Poynting vector vortexes crucially influence the bending direction of the gen-
erated photonic hook and vary the subsequent propagation routes for the lights (optical
signals) with similar wavelengths. This effect can be only represented by 3D Poynting
vector distributions [32] and cause multiple localised high-magnitude regions of Poynting
vectors to constitute a complete single photonic hook.
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Figure 5. Overview (a) and the rotated view (b) of 3D Poynting vector distribution for the model
of 1550 nm irradiation with the colour codes of streamlines: blue lines for long-base section
(−y direction), red lines for middle section (around 0 position on y axis), and green lines for short-base
section (+y direction).
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3. Conclusions

The numerical simulation proves that the proposed near-field light-bending photonic
switch as a Janus right-trapezoid-shaped dielectric particle embedded in the core facet of a
planar waveguide can successfully switch and guide the optical signals at two common
communication wavelengths, 1310 nm and 1550 nm, to different propagation routes based
on photonic hook phenomenon. The opposite bending directions are found for the gener-
ated photonic hooks; the downward one for 1310-nm-wavelength irradiation is, unusually,
separated into two high-magnitude areas by a Poynting vector flow. Three-dimensional
Poynting vector analysis demonstrates that the corresponding high-magnitude areas can
be sequentially matched by the Poynting vector streamlines in segments, which means
that photonic hook can exist in a similar joining form. The corresponding mechanism is
reported for the first time, and the future plan of the authors is to visualise similar 3D
Poynting vector flows using virtual reality (VR) technology.
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