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From the standpoint of the wave theory, we discuss the problem of an optical image formation created by a
virtually converging electromagnetic wave from a light source. We solved a diffraction problem of a point
source in a dielectric sphere. Formulas are obtained describing the virtual image of a point source in dielectric
sphere, in the parameter range where the approximation of geometric optics is not valid. For slits in an opaque
screen, the virtual image in the dielectric sphere allows the resolution of slits spaced from each other at dis-
tances much smaller than the diffraction limit λ/2. This explains the previously obtained experimental results
[Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. H. Hong, Nat. Commun.
2, 218 (2011)] on the super resolution effect with virtual image.
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In 1609, Galileo used a refracting telescope con-
sisting of a convex objective lens and a concave eye-
piece, forming a virtual, enlarged image of the object.
In 1611, Kepler formulated the rules of an optical
image formation within the lens on the basis of the
light refraction law and light straightforward propaga-
tion. Applying these rules to the transparent sphere, it
is easy to find the virtual image plane position

 and the corresponding magnification
factor . Here, n is a refractive index and
R is the radius of the sphere. Seneca wrote about the
magnifying effect of such spheres about two thousand
years ago [1]. The formulas written above have a lim-
ited range of applicability: they are not applicable as

, since in this case , as well as for the
sphere size of the order of several wavelengths of light
λ; geometric optics formulas work when .

Modern technologies make it possible to manufac-
ture spherical particles with sizes from tens of nano-
meters to tens of micrometers, which is widely used in
nanophotonics research [2]. Already the first experi-
ments [3] showed that an increase in resolution of a
virtual image using small spherical micro lenses with a
size of the order of several micrometers allows one to
overcome the diffraction limit and viewed the struc-
tures of the size of tens of nanometers with the help of
usual microscope. It has been studied in numerous
works cited in [4], and received good experimental
confirmation. However, a theoretical description of
this phenomenon requires a description of the virtual
image within the wave theory framework. We are not
aware of any works devoted to the study of this
problem.

The Mie theory [5, 6] considers the exact solution
of Maxwell’s equations for the case of scattering of a
plane electromagnetic wave by a spherical particle.
This theory can be generalized by considering the
scattering of a diverging spherical wave from the point
source inside a sphere or at some distance from it [7,
8]. In these works, another model of a point source
was adopted, which does not consider the important
contribution of the longitudinal modes. Moreover, in
[7, 8] the construction of a virtual image was not con-
sidered as well it must be constructed as a virtual con-
vergent electromagnetic wave from the scattered light.

Let  be the field of some source, and Γ be the sur-
face of the aperture of the optical device. Let us intro-
duce field  using the Kirchhoff–Helmholtz theorem
[5]

(1)

where  is the Green’s func-
tion of the wave equation, the operator is 

 and  is the wave number. As

known [5, 6], integral (1) does not depend on the
shape of the surface, and (in the case of an infinite or
closed surface), also on the distance from the surface
to the source. For example, let the source be radiation
emanating from the slit of an opaque screen. The field
of such a source can be defined as
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Fig. 1. (Color online) Comparison of the abs  function
from Eq. (3) (blue line) with a numerical calculation for
the  source term in Eq. (1) (dashed red line). Point
source located on the z axis at the point ,

. A blurry virtual image of this source is shown
in the insert.
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Here,  is the field in the plane of the hole. In the
case of Kirchhoff boundary conditions [5], we can
accept the simplest model: . The  field
represents a superposition of point sources of the form
of . Let  be an infinite plane, being, in fact,
the aperture of the optical device, if the field ,
then in the plane of the source parallel to the plane Γ,
the image field  can be analytically represented as

(3)

This image field from the point delta source is deter-
mined by the function , which has a half-
width λ/2. Hence, the Rayleigh criterion follows: res-
olution limit of two incoherent point sources is equal
to λ/2. This criterion applies to lateral resolution, lon-
gitudinal resolution in this case, significantly less than
λ/2. If  presents a closed surface surrounding the
sources, then the diffraction limit λ/2 preserves in any
direction. In the case of  source, an ana-
lytical solution similar to (3) cannot be found, but
Eq. (1) can be numerically integrated. Numerical
integration leads to results, qualitatively similar to (3),
but the first zero of distribution  is situated at the
point , see Fig. 1.

Now, we can complicate the task by setting a
dielectric sphere of radius  between the point source
and the optical aperture. In this case, one can still use
Eq. (1), in which, however, one should substitute the
field , caused by diffraction of radiation on the
sphere. Without limiting the generality, we represent
the source term in the form:

(4)

To pass to the original normalization, it is sufficient to
put  for simplicity we consider the source sit-
uated on the z axis, i.e., . The fields
related to the space outside the sphere will be denoted
by index 1, and the fields inside the sphere by index 2.
Both fields satisfy wave equations with the refractive
indices  and , and the permeabilities  and . To
find these fields we use the standard decomposition in
the eigenfunctions M, N, and L in the spherical coor-
dinate system  in the same way as it is done
within the Mie theory [9]:
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The functions M, N, and L are given by the formu-
las [9]

(7)

(8)

(9)

Here,  for , for
, ,  is the spherical Bessel function,

 is the spherical Hankel function of the first kind,
, . The

quantities of magnetic fields are determined from (5)
and (6) by Maxwell’s equations. The scattering coeffi-
cients a, b, c, d, f, and t are found from six boundary
conditions on the surface of the sphere:

(10)

Here, the first four equations meet the usual condi-
tions of continuity of tangential components of elec-
tric and magnetic fields on the surface of sphere, the
fifth describes the continuity of the normal induction
vector  (it is more convenient for us to use the
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Fig. 2. (Color online) Comparison of the results of geometric (blue line) and wave (red line) optics for parameters

. In integral (1), the domain  represented a square with side  and center along the  axis, at the point
. As the refractive index increases, the size of the localization region of the virtual image also increases. Blurred virtual

images of a point source visible with spheres with refractive indices  and  are shown on the right side of the figure.
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refractive index  instead of the dielectric per-
meability ). Finally, the sixth equation describes the
continuity of the longitudinal field (here, Q is the sole-
noidal part of the  field). The presence of longitudi-
nal modes proportional to L in expansions (5) and (6)
leads to the fact that all six Eq. (10) are linearly inde-
pendent. This is the difference from the standard pro-
cedure in Mie theory [5, 9], where longitudinal modes
play no role. However, it is precisely these modes that
are important for constructing virtual images. Omit-
ting the cumbersome calculations of the scattering
coefficients from the solution of Eq. (10), we give the
final formulas
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Here, , , , , prime
means differentiation by argument. In the limit, when
the point source moves away to infinity, functions t
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Fig. 3. (Color online) Virtual image of two slits with a width of λ/6 and a distance between them λ/4 (a) and λ/6 (b). The position
of the slits is shown with dashed lines. Parameter values: (a) ,  and (b) , . The virtual images are located
at the distances: (a)  and (b) . The slit fields add up in an incoherent way. The slit radiation (a) is polarized

along the x axis. In the slots (b)  for the right and  for the left slots, respectively. When constructing, only
the  polarization of the field  was considered.
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and f tend to zero, and the coefficients a, b, c, d tend
to their expressions in the Mie theory; in this case, one
should set . The factor –i in these limit-
ing formulas arises from the derivative of the delta
function of the selected point source (4). The position
of the virtual image was determined by Eq. (1), as the
point of the local maximum of the field . The depen-
dence of the magnification factor of the virtual image
M on the value of the relative refractive index is shown
in Fig. 2. The graph also shows the magnification fac-
tor at the geometric optics limit. Despite the fact that
in the given example the formal requirements of geo-
metric optics are fulfilled: , , the difference
between the two dependences, as expected, increases
as the refractive index approaches two.

Now let us turn to the question of overcoming the
diffraction limit for the virtual image. The possibility
of such a phenomenon in the wave theories has not yet
been studied. From the experiments [3, 4, 10, 11] it
follows that the diffraction limit is overcome at certain
parameters of the sphere. Since the data on the resolu-
tion of the periodic system of the dark and light stripes
are most often encountered in experiments (usually
nanosized strips recorded on Blu-ray disk), to begin
with we will consider the resolution field from the slot
according to Eq. (2). For building solutions, we use

auxiliary solutions  for fields of the form ,

where  describes arbitrary position of the source in
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space. Solution (2) in this case, due to linearity, has
the form:

(17)

where X is one of the components of the scattered field
(in program in MATLAB first, the coefficients (11)–
(16) are calculated, and then the fields themselves are
constructed).

Calculations using the above formulas show that
the diffraction limit is indeed overcome in a certain
range of sphere parameters. Figure 3 shows two exam-
ples where in the virtual image, two adjacent bright
stripes are located at distances λ/4 and λ/6 from each
other. In the given examples, the slits are considered
incoherent with respect to each other, but the sources
inside each of the slits are coherent. The above theory
does not consider the possible change in the field 
inside the slot itself, as well as the self-consistent cal-
culation of the field  due to the effect of the sphere
backscattering. Effects of this kind play an important
role in the “particle on a substrate” problem [12, 13].
However, even in the considered approximation, the
wave theory answers affirmatively to the question of
the possibility of overcoming the diffraction limit in
the virtual image.

A theoretical resolution limit based on the above
formulas is possible, but it requires large numerical
calculations associated with finding the maximum
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Fig. 4. (Color online) (a) Virtual image of a source located on the z axis  as a dark dot on a light background. (b) A virtual
image of two sources located symmetrically along the x axis at the distance λ from each other, . Problem parameters:

, , the position of the virtual image in the plane .

= −( )z R
= −z R

= 18q = 2n = −2z R
resolution in the five-dimensional space of parame-
ters: the size of the sphere, the refractive index, and

 coordinates describing the position of the
source (in the general case, one should also take into
account polarization and slit shape). The experimen-
tally confirmed resolution of the virtual image in the
visible region is λ/8 [3, 4]. This theory also explains
the experimentally observed effect when, in a certain
range of parameters, the light slits in the virtual image
look dark, and the dark areas between the slits look
light. In essence, this is the reincarnation of a well-
known phenomenon in the theory of diffraction, when
a bright spot is observed in the center of the image of
an opaque disk, corresponding to half of the action of
the first open Fresnel zone [5]. The corresponding
pictures of the virtual image are shown in Fig. 4.

CONCLUSIONS

The proposed method of forming an optical image
by constructing a virtual converging wave makes it
possible to find the parameters of a virtual image in the
region where geometric optics is inapplicable. The
method allows one to define the resolution image
parameters beyond the diffraction limit.
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