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Abstract. Results related to the peculiarities of light scattering by nanoparticles and
nanowires near plasmon resonance frequencies are reported. It is shown that the 
scattering problem for weakly dissipative media cannot be analyzed in the dipole
approximation, in contrast to the classical Rayleigh scattering. A structure of the
Poynting vector in the near field area is obtained. It is shown that small variations of
the size parameter or/and the incident light frequency may lead to drastic 
transformations of the near field distribution.

1. Introduction
Modern nanotechnology and nanooptics deal with objects whose size is smaller (or even much
smaller) than the radiation wavelength . Thus, the actual problem for nanotechnology, data storage
technology and nanopatterning with laser ablation is related to the ability to overcome the diffraction
limit. Many ideas have been suggested, including SNOM technique and other techniques using laser in 
combination with a tip of AFM, etc. [1-4]. Lately much attention has been paid to the methods of
plasmonics [5], related to excitation of surface electromagnetic waves within different nanostructures.
These structures are used in many modern applications, e.g. in super-RENS [6], heat assisted magnetic
recording (HAMR) [7], etc.

In the present paper we discuss the peculiarities of light scattering by nanoparticles and nanowires 
near plasmon resonance (or polariton resonance in dielectrics) frequencies. We will show that in the 
specified regions light scattering undergoes dramatic changes relative to the conventional Rayleigh
scattering and a wide variety of new effects comes into being, provided the nanoobjects consist of
weakly dissipating media. For such media the radiative damping [8] related to inverse transformation
of localized plasmons generated by incident light into scattered electromagnetic field plays an
important role and for this reason the scattering problem cannot be treated in the dipole approximation.
It was demonstrated for spherical particles in Refs. [8-11]. A similar effect for nanowires is discussed
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in the present paper. The extinction coefficient for a spherical particle may demonstrate the inverse
hierarchy of optical resonances [8, 10, 11], so that the resonant extinction cross-section increases with 
an increase of the resonance order (dipole, quadrupole, etc.) in contrast to its dramatic decrease for
higher order resonances in the case of the Rayleigh scattering. We name this effect the anomalous
scattering [10, 11]. The anomalous scattering results in the unusual and complicated structure of the
electromagnetic field in the vicinity of the particle including optical vortexes and other peculiarities 
[9].

2. Anomalous light scattering by a spherical particle
Though light scattering by a spherical particle is one of the most fundamental problems of classical
electrodynamics, the general physical understanding of the problem has not changed much since the
publication of its exact solution by Mie in 1908 [12]. As for light scattering by a particle whose size is 
much smaller than the wavelength of incident light, its understanding up to now is based upon the
approach developed by Lord Rayleigh in 1871 [13]. According to the approach a small particle should
emit electromagnetic radiation as an oscillating electric dipole (the Rayleigh scattering). The point to
be made is that this simple description has quite a general and very important exception, when the
scattering process has very little in common with the Rayleigh scattering, and the extinction 
(scattering) cross-section differs from that given by the Rayleigh approximation in orders of 
magnitude.

Let us elucidate this exception. The simple formula for the Rayleigh approximation can be easily 
found from the general Mie solution. According to this solution, the extinction, scattering and 
absorption cross-sections are given by the following expressions [14]:
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Here we consider a spherical particle with complex refractive index  and radius  placed in 
unbounded medium with purely real refractive index , and 
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wave numbers. The scattering electric  and magnetic  amplitudes are defined by the Mie
formulae [14]
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 are the Bessel and the Hankel functions.  The prime denotes derivative 
over the entire function’s argument, i.e. 
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Using expansions of these special functions in power series for a small particle, where  one 

arrives at the classical Rayleigh formula [14]:
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where 22
mp nn  stands for relative dielectric permittivity.

Expression (3) has a resonant denominator, which diverges at 2 . The physical meaning of the
divergence is well known and quite clear. The particle could be regarded as a resonator. It has its own
eigenmodes (surface localized plasmons). At 2  the frequency  of the dipole eigenmode
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equals the one for the incident light. Thus, we face nothing but trivial resonance. If the dissipation rate 
is zero there is no damping and the amplitude of the resonant mode should diverge. The conventional
way to avoid the divergence is to include finite dissipation. Since any actual physical system must
have some dissipative mechanisms 0Im  and expression (2) remain finite at any ω.

However, in addition to the dissipative damping the problem in question must possess another
mechanism existing even at zero dissipation rates [8]. Namely, the temporal oscillations of the field 
related to excitation of eigenmodes result in oscillations of the corresponding polarizations (dipole,
quadrupole, etc.) of the particle, i.e. to emission of electromagnetic waves, which transfer energy from
the particle to infinity. It means that particle eigenmodes always are damped. Being entirely related to 
inverse transformation of localized plasmons into propagating electromagnetic radiation the radiative
damping has nothing to do with dissipation and it exists even at purely real p . The radiative 
damping means the eigenfrequencies always have non-zero imaginary part, i.e. the exact resonance
cannot occur at any purely real frequency . In other words, it means that at small enough dissipation
rates equation (3) becomes erroneous at any (as small as desired) radius of the particle. In this case 
formula (3) should be replaced by another expression, obtained from the exact Mie solution of the 
problem which includes the radiative damping explicitly. The parameter region where the radiative 
damping prevails over the dissipative is exactly the one where the anomalous scattering is realized.
Note in this connection recent publication [15], where the applicability conditions of the dipole
approximation for light scattering by small particles are also discussed and inequalities similar to those
of Ref. [8] are obtained. 

Analysis shows that in Eq. (1) only amplitudes  have resonant denominators. These amplitudes
can be presented as 

a
ia  where  is used for the numerator of  in Eq. (2). When 

the dielectric permittivity  is a real quantity (i.e. 
a

2n 0Im ) functions  and  are also purely
real. Far from the plasmon resonance , thus ia , which at small  leads to the 
Rayleigh formula (3). However the exact plasmon resonance corresponds to the situation when 

. For small  this equation can be presented in the following form [11]
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Note that 22 nn , thus, Eq. (4) determines the resonant frequencies  for the particle 
with small but finite size; these frequencies can be found from Fig. 1. Owing to vanishing of  it is
clear that correct description of the resonances requires accounting of  in the
resonant denominators. This term is responsible for the shift of the poles of the scattering amplitude
from the axis of real

12q

 to the complex plane (radiative damping), which results in finite and real
 at the resonant frequencies. As a result we obtain a simple expression 1a
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In contrast to the usual Rayleigh scattering, where , Eq. (5) gives rise to the dependence
. According to the Rayleigh approximation, the basic scattering is related to the dipole 

mode: all higher order resonances (quadrupole, etc.) are suppressed dramatically. In contrast to that,
according to Eq. (5) anomalous scattering has the inverse hierarchy – the greater the order of 
resonance, the greater the corresponding cross-sections [8, 10, 11]. When we have dissipative media
with
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0Im p  the resonance denominators in expression for  have two types of imaginary terms,a
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one related to the usual dissipation and the other related to the radiative damping. Then we 
immediately see that there is competition between the discussed radiative damping and the usual
dissipative one. The discussed effects are observable provided the radiative damping prevails over the 
dissipative one. It results in the following applicability condition:

2

12
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mq .        (6)

The right hand side of Eq. (6) decreases sharply with a decrease of . It puts a certain constraint
on the minimal size of the particle, when the anomalous scattering can be observed. At any as small as
desired but finite 

mq

 there is a certain quantity Ra  so that at Ra  Eq. (5) is violated, 
the anomalous scattering is suppressed and the normal Rayleigh hierarchy of the resonances is 
restored.

An example of inverse hierarchy of optical resonances for an aluminium particle as well as 
restoration of the normal Rayleigh hierarchy at large  is shown in Fig. 2. For these calculations we 
used optical constants for the bulk material from [16] and took into account the variation of collision
frequency with particle size: avFeff  [17]. We used  cm/s, which corresponds 
to the mean value of the anisotropic Fermi velocity in aluminum [18]. The inverse hierarchy of
resonances as well as crossover to the normal Rayleigh hierarchy at large enough  are seen clearly.

810Fv

Though the inverse hierarchy of resonances is quite an appealing phenomenon, the most exciting 
feature of the anomalous scattering is absolutely unusual near-field distribution in the vicinity of the 
resonances. Regarding previous publications related to the problem in question, we may refer to paper 
[19], where the near-field of vector Poynting is calculated in the Rayleigh dipole approximation.

Fig. 1. Trajectories of the first three resonances
with  (dipole),1 2  (quadrupole) and

 (octopole) versus size parameter q . At
 these resonances tend to 

3
0q
1 . At small but finite  curves follow

Eq. (4) and deviate to 
q
. At  1.167,q

96.4  for dipole (and similar to other
resonances) the anomalous scattering 
resonance is merged with the nearest Mie
resonance. Then resonant  increases with a 
further increase in  beyond  1.167.q q

Fig. 2. Inverse hierarchy of resonances for an
aluminum particle in vacuum.  Normalized
extinction, scattering and absorption cross-
sections, ,2aQ ii for a particle with =
30 nm as functions of incident light
wavelength λ. Points of dipole, quadrupole and
octopole resonances are indicated with arrows.
The extinction cross-section of the quadrupole
resonance is the greatest. With  nm the 
octopole resonance becomes the greatest [11].
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The near-field distribution for the anomalous scattering differs drastically from that following for the 
same particle and the same order of resonance in the Rayleigh approximation [9]. The near-field has 
rather a complicated structure, which changes a lot with fine changes of the problem parameters,
especially with changes of . A typical picture of the near-field with optical vortices is shown in Fig. 
3. Unfortunately for lack of space we cannot discuss here this interesting matter in detail. Such a 
discussion will be presented in our forthcoming publications.

Fig. 3. Poynting vector lines for non-
dissipative case around the spherical 
particle (incident plane wave with

xE  comes from z ft insert
shows 2D field in xz plane. Points 1 
and 2 are saddles. Thick red lines
indicate the separatrixes in xz-plane.
Field lines in 2D picture demonstrate
circular energy flows around centers
(points 3 and 4). In 3D plot one can
see the energy flow outward the 
particle (helicoidally shaped fields 
lines). It illustrates the radiative losses 
of energy, general directions of which
are shown by arrows on the bottom xy
projection plane.

). Le

. Anomalous light scattering by nanowires 
nt also for nanowires with surface plasmons. This also 

3
Effects related to radiative damping are importa
leads to deviation of extinction and scattering coefficients from approximations for linear dipole, e.g. 
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here factor  presents the geometrical cross-section,  is the length of the cylinder.
reso
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Corresponding nances arise at 1Re , where sca  divergent at 0Im . However, owing to
the radiative damping the divergenc 0e at Im is c off and we arr rmula, similar to Eq. 
(5):

uts ive to fo
ressca kL16 , where resk presents ve vector at the resonant frequency. Compared to a

sphe e near-field structure for nanowire can be more complicated see e.g. Fig. 4. 
In both the cases (the spherical particle and the nanowire) the near-field structure turns ou

the wa
rical particle th

t to be
quite sensitive to fine detuning of frequency of the incident light from the exact resonant frequencies 
[20, 21]. Numerous applications of the anomalous scattering in nanotechnologies and related fields
may be associated with (i) an enormous amplification of the incident electromagnetic field in the near-
field area whose size is much smaller than the incident radiation wavelength; (ii) controllable changes
of the near-field structure with changes of the incident light frequency; (iii) comparable intensity of
the resonant electromagnetic field at different resonant frequencies of the incident light, corresponding
to different orders of resonance, accompanied by quite a different field distribution for each order of 
the resonance. This is the proper way for optical manipulation in the field structure in the nanoscale
region, which can be used for different applications in nanooptics.
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Fig. 4. Poynting vector field lines around the
nanowire (cross-section in xy-plane) with 1q
and 1  (incident plane wave with y,
comes from

E
x ). Separatrixes are indicated

by red lines. Enumerated 14 singular points 
around the wire correspond to zero values of
Poynting vector components; points 1, 2, 5, 6, 9,
11, 12 and 14 are saddles, while points 3, 4, 7, 8,
10 and 13 are centers. There are also six singular
points (open circles) on the wire surface: four 
centers (circular energy flow around these
centers produce plasmon emission, responsible 
for radiative damping) and two saddles.  Four
singular points also exist inside the wire: two 
centers and two saddles.
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