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ABSTRACT Light scattering by a small spherical particle with
low dissipation rate is discussed according to the Mie theory.
It is shown that near plasmon (polariton) resonance frequencies
one can see non-Rayleigh anomalous light scattering with quite
unusual scattering diagrams.

PACS 42.25.Fx; 42.65.Es; 46.40.Ff; 78.67.Bf

1 Introduction

According to the Rayleigh approximation a small
particle scatters light as a point dipole. The dipole far field
scattering polar diagram is presented by the well known
“8-shaped” distribution, which has been discussed in many
books, see e.g. [1, 2]. Although the dipole scattering paradigm
for small particles has existed for more than 100 years, it
was shown recently that the Rayleigh approximation fails for
a particular case of weakly dissipating materials near plas-
mon (polariton) resonance frequencies. One can see imme-
diately that the Rayleigh scattering cross-section contains an
ε+2 factor in the denominator and diverges if Reε = −2 and
Imε → 0, where ε = εp/εm is the relative dielectric permit-
tivity; εp and εm stand for the dielectric permittivities of the
particle and media, respectively. Note however, that optical
excitation of localized plasmons is accompanied by an in-
verse process – transformation of localized resonant plasmons
into scattered light, resulting in the radiative damping, see
e.g. [3, 4]. The Rayleigh approximation holds when this radia-
tive damping is small compared to the usual dissipative one.
In the opposite limit, when the radiative damping prevails,
the Rayleigh scattering is replaced by the anomalous light
scattering [5], which results in sharp giant optical resonances
and a complicated near-field structure of the Poynting vec-
tor field [5–8]. Here we demonstrate that the anomalous light
scattering is characterized by an extraordinary scattering dia-
gram, where a small variation in the incident light frequency
changes the scattering diagram completely, e.g. from forward
scattering to backward scattering. This effect can be used in
data storage technologies and some other applications.
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2 Theoretical model

In fact this extraordinary scattering effect follows
from the classical Mie theory [1, 2]. We just consider the
range of parameters of the Mie solution, which usually is not
inspected. In the far field r � λ (r is the distance from the par-
ticle center), the radial component of the scattered radiation
is negligible and the scattered diagram is defined by angu-
lar components |E(s)

θ |2 = I (s)
II cos2 ϕ and

∣
∣E(s)

ϕ

∣
∣
2 = I (s)

⊥ sin2 ϕ,
where the corresponding scattering intensities are presented
by the asymptotic of the Mie formulas (see e.g. formula (98)
in Chapter XIV [1]):
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Here P(1)
� (cos θ) are the associated Legendre polynomi-

als, and the stroke indicates differentiation over the en-
tire argument of the corresponding function, i.e. P(1)

�

′
(z) ≡

d P(1)
� (z)/dz. Quantity q = 2πa

√
εm/λ ≡ aω

√
εm/c defines

the so called size parameter, λ is the wavelength of the inci-
dent light in vacuum, ω is its frequency, c is the speed of light
in vacuum, and a is the radius of the spherical particle. The
scattering amplitudes eB� (electric) and mB� (magnetic) within
the framework of the Mie theory are given by the following
expressions:
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J� (z) and N� (z) are the Bessel and the Neumann functions,
respectively. The strokes in formulas (4), (5) once again
indicate differentiation over the entire argument of the corres-
ponding functions, i.e. ψ′

� (z) ≡ dψ� (z)/dz, etc; n = √
ε is

the relative complex refraction index. We consider the same
geometry as that in [1], i.e. the incident plane wave with unity
amplitude propagates along the z-axis, the electric vector dir-
ected along the x-coordinate and the magnetic vector along
the y-coordinate. Spherical coordinates are r, θ and ϕ, where
θ is the azimuthal angle between the radius vector r and the z
axis, ϕ is the polar angle at x, y-plane.

The extinction, scattering and absorption cross-sections
are given by the expression σ = πa2 Q, where related efficien-
cies Q are presented by amplitudes a� and b� as follows [1, 2]:
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Qabs = Qext − Qsca . (8)

We want to draw attention to the fact that formulas (1)–(5) fol-
low from the exact solution of the Maxwell equations and they
are valid for any size parameter q and any dielectric function ε.
The only approximation done so far is that in (1), which is valid
for far field scattering only. However, at small q (2)–(8) may be
simplified too, namely by expanding the Bessel and Neumann
functions in power series, one can find at small q [9]:
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Far from the resonances R	 I. In this case the term with
� = 1 (dipole scattering) plays the dominant role. Also for
small particles one can neglect magnetic amplitudes com-
pared to the electric ones because of their additional smallness
in q. Thus, the amplitude a1 ≈ − 2i

3
ε−1
ε+2 q3 plays the dominant

role. It yields the classical Rayleigh formula:
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As we have mentioned above this formula has singularity
at the plasmon resonance frequency, when ε = −2. In real-
ity this divergence does not exist; it is stabilized either by
dissipative processes or by the radiative damping at low dis-
sipation rates. One can see immediately from the exact (3)
that for nondissipative media maximal values of the ampli-
tudes are a� = 1 and b� = 1 at plasmon resonance frequen-
cies, where I(a)

�

(

q, ε
(

ω
(a)
�

))

= 0 (electric resonance) and

I
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(
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(

ω
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= 0 (magnetic resonance), respectively. For
small particles and ε ≤ −1 only electric resonances occur.
Therefore in what follows, a simplified notation ω� is em-
ployed to denote ω

(a)
� . Thus, the scattering efficiency for

a nondissipative particle at exact resonance frequencies ω� is
given by the expression

Qsca ≈ Q(�)
sca = 2 (2�+1)/q2 , (14)

where Q(�)
sca stands for the partial scattering efficiency. Equa-

tion (14) is valid for resonances, which do not overlap sig-
nificantly. Thus, this formula is applicable up to q ≈ 1. As
in the vicinity of the resonances at q 	 1 the net efficiency
is overwhelmingly determined by the corresponding partial
one, the expression (14) means that the resonance scattering
cross section increases with an increase in the order of the res-
onance �. For example, the cross-section at the quadrupole
resonance is 5/3 of that at the dipole resonance, etc.. This
“inverse hierarchy of resonances” [4, 5] is a remarkable fea-
ture, which disagrees with the conventional Rayleigh case
dramatically. Equation (14) also exhibits inverse frequency
dependence – while in the Rayleigh case the scattering cross-
section increases with an increase of frequency (q ∝ ω) as
ω4, see (13), in the case given by (14) it decreases1 as ω−2.
Note also that the corresponding resonant cross-section σ

(�)
sca =

2π
εm

c2

ω2
�

(2�+1) does not depend on the particle size and there-

fore does not vanish at a → 0. The finiteness of the cross-
section for a particle with zero radius obviously is an artifact
related to the non-dissipative limit [4, 5, 10]. In reality there
is competition between the radiative damping and the one
related to the dissipative losses. All the fascinating effects dis-
cussed are strongly suppressed by dissipation. The necessary
conditions for the anomalous scattering to take place may be
found from the Mie theory, taking into account the dissipation
factor ε′′ in the denominator of the scattering amplitude. This
consideration leads to the applicability condition [4, 5]

ε′′ (ω�) 	 q2�+1

� [(2�−1)!!]2 . (15)

When this condition is fulfilled the anomalous scattering is
dominant. In the opposite case the Rayleigh scattering is re-
stored. The condition clearly explains numerical results found
in [10]. For example, it follows from (15) that with any small
but finite ε′′ the anomalous scattering is suppressed for very
small particles. Thus, under real experimental conditions the

1 It should be stressed however, that while in the Rayleigh case ω may
take any values, for the anomalous scattering ω should belong to the close
vicinity of the corresponding resonance frequency. The latter is deter-
mined by the condition I(a)

� (q, ε (ω�)) = 0 for each order of resonance �.
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anomalous scattering can be realized just in some interme-
diate range of size parameter and only up to a certain order
of the resonances: � < �max. We can illustrate this effect for
metal, whose dielectric permittivity is described by the Drude
formula:

ε = n2 = 1 − ω2
p

ω2 +γ 2
+ i

γ

ω

ω2
p

ω2 +γ 2
. (16)

Here, as usual, ωp denotes the plasma frequency, while γ is
the frequency of electron collisions. Introducing normalized
frequency ω̃ = ω/ωsp and normalized collision frequency γ̃ =
γ/ωsp, where ωsp = ωp/

√
3 stands for the frequency of the

dipole surface plasmon resonance at q → 0, one can rewrite
(16) as follows:

ε = 1 − 3

ω̃2 + γ̃ 2
+ i

γ̃

ω̃

3

ω̃2 + γ̃ 2
. (17)

In Fig. 1 the corresponding resonances are shown for the
nondissipative limit γ = 0 and for the cases of weak dissipa-
tion with γ̃ = 10−2 and 10−3, respectively. The inverse hierar-
chy of resonances exists for the nondissipative limit although
even small dissipation suppresses this effect for small q. How-
ever at q = 0.7 and γ̃ = 10−3 the effect is still pronounced at
� = 2.

3 Results and discussions

Now we can return to the scattering diagram in (1).
Following [1] we will present the scattering diagram in the
xz-plane (ϕ = 0) as a function of angle θ for two cases: lin-
early polarized light and nonpolarized light. The first case
corresponds to the situation when the length of radius vector
I (s)
II (θ) presents the corresponding intensity. For nonpolar-

ized light we can consider averaging
〈

cos2 ϕ
〉 = 〈

sin2 ϕ
〉 = 1/2;

thus, the length of radius vector I (s)
II (θ)+ I (s)

⊥ (θ) presents the

FIGURE 2 The exact Mie solution;
polar diagrams in the xz-plane (ϕ =
0) for the electric dipole � = 1 (a),
quadrupole � = 2 (b) and octopole
� = 3 (c) plasmon resonances ac-
cording to (18)–(20). Analogous di-
agrams in the xz-plane for magnetic
resonances with � = 1, 2 and 3 are
shown in plots (d), (e) and (f). Red
lines correspond to linearly polarized
light, navy to nonpolarized

FIGURE 1 The exact Mie solution; dependencies of extinction efficiency at
characteristic frequencies of dipole (� = 1), quadrupole (� = 2) and octopole
(� = 3) resonances at three different values of the size parameter: q = 0.1, 0.3
and 0.7, respectively. Lines with different colours correspond to nondissipa-
tive case γ = 0 (red), γ̃ = 10−3 (olive) and γ̃ = 10−2 (navy). For γ̃ = 10−3

and q = 0.7 one can see an inverse hierarchy – the quadrupole resonance is
stronger than the dipole. The resonances for the nondissipative limit are ex-
tremely sharp, e.g. for q = 0.1 the width of the octopole resonance is 10−10 of
the characteristic resonance frequency and the corresponding cross-section of
extinction exceeds the geometric cross-section in three orders of magnitude
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corresponding intensity. In the case of the Rayleigh scattering
amplitude a1 plays the dominant role. Thus,

I (1)
II (θ) = a2

r2

1

q2
|a1|2 9

4
cos2 θ , I (1)

⊥ (θ) = a2

r2

1

q2
|a1|2 9

4
.

(18)

This produces the universal “8-shaped” (or ∞- shaped de-
pending on the definition of angle θ) angular distribution,
which does not depend on the size parameter (at q 	 1) or
dielectric permittivity ε, see Fig. 2. Only the total intensity
depends on these parameters. With anomalous light scatter-
ing the polar diagram remains the same, one should only put
a1 = 1 in the formulas in Eq. (18) . The important point how-
ever is that for the anomalous light scattering we also have
pronounced higher order resonances for a small particle, e.g.
quadrupole and octopole resonances shown in Fig. 1, while
in the case of the Rayleigh scattering they are suppressed. At
q 	 1 these resonances are not overlapped and they have polar
diagrams, which are presented at exact resonance frequencies
by (1) with a single term, e.g. with a2 = 1 for quadrupole res-
onance, or with a3 = 1 for octopole resonance, etc., namely:

I (2)
II (θ) = a2
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4
cos2 2θ ,

I (2)
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1
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cos2 θ , (19)
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1

q2
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1024
(cos θ +15 cos 3θ)2 ,

I (3)
⊥ (θ) = a2

r2

1

q2
|a3|2 49

256
(3 +5 cos 2θ)2 . (20)

For pure magnetic resonances (which occur at non-small q)
the scattering diagrams are produced by the corresponding
terms, related to magnetic amplitudes b�. To obtain the scat-
tering intensities in this case one has to replace a� → b�,
and I (�)

II (θ) ↔ I (�)
⊥ (θ) in the expressions for the electric res-

onances discussed above. Thus, the scattering diagrams for

FIGURE 4 The exact Mie solution;
scattering diagram for a gold par-
ticle, np = 0.57 + i2.45, in water,
nm = 1.33, for radiation wavelength
λ = 550 nm. The radius of the par-
ticle a = 8.75 nm (a), 80 nm (b)
and 90 nm (c), respectively. Similar
diagrams are shown in Fig. 14.10
of [1]. The corresponding size pa-
rameter q = 2πanm/π equals 0.133
(a), 1.215 (b) and 1.367 (c). Plot
(d) presents a scattering diagram
for a small particle a = 8.75 nm
of highly conducting material εp =√

i4πσ/ω, σ/ω = 104. Plot (e) rep-
resents a similar diagram for the
particle with a large value of refrac-
tive index np = 100. The last picture
(f) represents details of the scatter-
ing diagram for a large particle with
q = 10 and refractive index np = 1.5.
We consider vacuum as surrounding
media, nm = 1, in the plots (d), (e)
and (f). Red and navy lines have the
same meaning as that in Fig. 2

FIGURE 3 The exact Mie solution; amplitudes of the first three electrical
a� (solid lines) and magnetic b� (dash lines) resonances for gold nanoparti-
cles in water for the radiation wavelength λ = 550 nm. We used data of [1]:
for water nm = √

εm = 1.33 and for Au np = √
εp = 0.57+ i2.45. Different

electric and magnetic resonances overlap in the range of non-small size pa-
rameters q ≈ 1 (or larger), which can be seen well in the right plot with a
logarithmic scale

magnetic resonances in the yz-plane (ϕ = π/2) are obtained
from the ones for the electric resonances in the xz-plane
(ϕ = 0), etc. Polar diagrams for the first three electric and
magnetic resonances are shown in Fig. 2.

For strongly dissipating (at the resonance frequencies)
materials, e.g. for gold, amplitudes of partial resonances for
small particle q 	 1 are small ai+1 	 ai 	 1 while the widths
of the resonances are quite large. Different electric and mag-
netic resonances overlap in the range of non-small size param-
eters q ≈ 1 (or larger), see in Fig. 3. Overlapping of different
resonances and their interference produce more complicated
scattering diagrams, see (1). Some examples of that for gold
nanoparticle are presented in Fig. 4.

With perfectly conducting material (conductivity σ � ω)

or very large dielectric constant (refractive index np � 1) the
particle mostly produces backward scattering (“reflected” ra-
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FIGURE 5 The exact Mie solution;
variation in the scattering diagram
near quadrupole resonance for the
particle with q = 0.1. For nondis-
sipative materials it corresponds
to dielectric permittivity ε = ε(2) =
−1.503588. The left plot shows the
scattering diagram for ε = ε(2) +
10−4 (a), the central plot – for exact
resonance (b), and the right plot – for
ε = ε(2) − 10−4 (c). With this small
change in ε the scattering diagram
varies from forward scattering to
backward scattering. Pictures (d) and
(e) are calculated for fixed ε = ε(2)

but the particle size changes for 1%:
q = 0.101 (d) and q = 0.099 (e).
Plot (f) shows the ratio of forward
to backward scattering intensities
with a small variation of the size
parameter

diation). In these cases in spite of small q = 2πa
√

εm/λ, the
size parameter for the particle qp = 2πa

√
εp/λ cannot be con-

sidered as a small quantity and (9)–(12) are not valid any-
more. Inspection of the case of ideally reflected small sphere,
σ/ω → ∞ shows the ratio of forward and backscattered in-
tensities of 1:9, see Problem 2 to § 92 in [11]. When both
parameters q and qp are small, the Rayleigh scattering yields
the symmetrical diagram, shown in Fig. 4a. As the radius of
the sphere increases to q ≈ 1, more light is scattered in the
forward direction (the so-called Mie effect [1], see Fig. 4b,c).

The anomalous light scattering for weakly dissipating ma-
terials at q 	 1 also presents the situation when different res-
onances may interfere with each other. Although at the exact
resonance the net scattering diagram is overwhelmingly deter-
mined by the corresponding partial diagram, shown in Fig. 2,
small detuning out of the resonance frequency yields com-
parable partial scattering amplitudes for different modes. It
means that near the partial plasmon resonance frequencies the
scattering diagram have extra fast modifications, see Fig. 5 as
an example. Similar effects arise also with a small variation
of the particle size at fixed light frequency. We call these dia-
grams extraordinary scattering diagrams. The extreme sensi-
tivity of the diagram presented in Fig. 5 to the finest variations
in ε is related to the non-dissipative limit. Finite dissipation
smoothens the effect, though the effect exists as long as the
corresponding high order resonances remain pronounced.

Strong variations in scattered intensities can be found at
different angles. Thus, weakly dissipating materials have a
very high dispersion of polarization. This effect can be used
for different applications, e.g. optical recording. Also small
temperature variations in ε can lead to high dispersion in po-
larization. However it should be stressed that to have the effect
pronounced one needs materials with weak dissipation near
plasmon resonance frequencies. A possible candidate which
might exhibit the discussed modifications in polar scatter-

FIGURE 6 The exact Mie solution; spectral dependencies of the extinction
efficiency for a potassium cluster in a KCl matrix. Optical constants for both
materials are taken from [13]. In our calculations we took into account the
size effect renormalizing the collision frequency of free electrons due to their
collisions with particle surface [14], γ → γ∞ +vF/a. The data for the Fermi
velocity vF = 8.6×107 cm/s for this renormalization was taken from [12]

ing diagram near quadrupole resonance might be an addi-
tively colored alkali halide crystal (those with a stoichiomet-
ric excess of the alkali component), e.g. potassium chloride.
A small metal cluster of potassium produces the dipole scat-
tering with the peak position at 730 nm [12]. It agrees with
our calculations, see Fig. 6. The quadrupole resonance cannot
be seen for a very small cluster because of its suppression by
dissipation, see (15). However this resonance becomes pro-
nounced at larger values of the size parameter, as we have
discussed above, see also Fig. 1. For example for a cluster with
a = 70 nm the quadrupole resonance is quite pronounced and
for a > 90 nm (in some range of sizes) the amplitude of this
resonance is larger than that for the dipole resonance.

4 Conclusion

One can see in Fig. 7 that the shape of the scatter-
ing diagram practically does not change with variation of the
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FIGURE 7 Scattering diagram near
dipole (a–c) and quadrupole (d–f)
resonances for a potassium spherical
nanocluster with radius a = 70 nm
immersed in a KCl matrix

incident light wavelength in the vicinity of the dipole reson-
ance (peak at 930 nm), but does change dramatically with its
variation in the vicinity of the quadrupole resonance (peak at
718 nm) from forward at λ = 718 nm to basically backward
scattering at λ = 758 nm. This clearly indicates the mentioned
dispersion of polarization near the quadrupole resonance for
weakly dissipating materials.

An extraordinary scattering diagram can be also found for
sodium nanoclusters immersed in a NaCl matrix, as well as
for aluminium nanoclusters in vacuum. Many researchers (see
Refs. in [12]) have reported that the thermal heating-cooling
process yields variation of the size of alkali-metal colloidal
particles in the additively colored alkali halide crystals. Be-
cause of the extraordinary scattering effect this permits the
use of the dispersion of polarization to write and read multi-
bit information in nanoclusters with sub 100 nm range of
sizes.
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