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Letters

Comments on “A Unique Extraction of Metamaterial
Parameters Based on Kramers–Kronig Relationship”

Joaquim J. Barroso and Ugur C. Hasar

The above paper [1] presents a numerical procedure for extracting
the effective constitutive parameters of metamaterials. From the fact
that the imaginary part of the refractive index is explicitly given by
the magnitude of the transmission coefficient, while the real part is
ambiguously defined by the phase of the transmission coefficient, the
method above enforces causality to calculate the real part of the re-
fractive index from its imaginary part by numerically integrating the
Kramers–Kronig relation over a prescribed frequency range. The re-
fractive index thus calculated for a metamaterial composed of split-ring
resonator (SRR)-wire unit cells shows some discontinuities appearing
on the covered frequency interval.

The authors [1] interpret the discontinuity in the refractive index
as an upper limit of the effective medium theory. For example, in
[1, Fig. 9(b)], the gray areas are claimed to represent frequency
regions above this upper limit. It is argued that the rapidly changing
phase of the transmission coefficient greatly affects the real part of the
refractive index for the fundamental branch, prohibiting the retrieval of
effective material parameters at low frequencies. They also conclude
that the discontinuity of the refractive index indicates that the limit of
the effective medium theory has been reached, thus placing limitations
on transmission-reflection-based methods to retrieve constitutive
parameters of metamaterials containing several layers of a unit cell.

The purpose of this letter is to point out that the cause of the discon-
tinuities is due to improperly calculated branch indices, denoted as �
in [1]. To show this, we recast the complex transmission coefficient ex-
pression � � �� � ������� � ������	� �� to obtain for the refractive
index
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where �� is the free-space wavenumber, � is the sample length, and the
integer � denotes the branch index. The phase �	 is added to the
complex � to make the logarithmic function single valued and contin-
uous at �� �.

To verify the results shown in [1, Fig. 9], we calculate the transmis-
sion coefficient � for a 17.5-mm-thick metamaterial sample with as-
signed electric permittivity and magnetic permeability represented by
the Drude and Lorentz models as � � ����
�����
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Fig. 1. Wrapped (red in online version) and unwrapped (blue in online ver-
sion) phases of the transmission coefficient over the: (a) 2–40-GHz range and
(b) zoomed in on the 9–11-GHz range.

���� � � ��� GHz, and �� � �� GHz such that ����� � � and
����� � � at all frequencies as required by the passivity condition,
consistent with the assumed time harmonic variation ���������. The
quantities above have been selected and carefully adjusted to well re-
produce the scattering parameters obtained from electromagnetic sim-
ulation for the unit cell described in [3], and which is the same as that
considered in [1]. The unit cell is in the shape of a cube, which is re-
peated periodically to build in free space a cubic metamaterial of lattice
spacing (� 2.5 mm) equal to the cube edge length. The thickness of
17.5 mm (seven-unit cells) is that of the slab whose retrieved refractive
index is shown in [1, Fig. 9].

From the calculated transmission coefficient phase, which is dis-
played in Fig. 1, we identify over the 2–40-GHz frequency range ten
resonance frequencies at which the phase of � jumps from �	 to 	.

In unwrapping the phase of the transmission coefficient [2], the fre-
quency interval 
– (Fig. 1) is shifted down by �	, the second
interval –� by ��	, the third one �–� by ��	, the next two
intervals (�–� and �–�) are shifted down by ��	 and �	, re-
spectively; the sixth interval �–� is zero shifted, while the next three
intervals are consecutively shifted up by �	. Therefore, the branch
indices � are calculated (Fig. 2) from the operation to make the phase
of � continuous. Once the complex transmission coefficient � has
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Fig. 2. For the 1.75-cm-thick metamaterial sample, the branch indices over the:
(a) 2–40 GHz range and (b) zoomed-in view on the 9–11-GHz frequency range.

Fig. 3. Refractive index unambiguously retrieved (blue in online version); the
index calculated without phase correction (red in online version).

been unambiguously determined, then we use (1) to calculate the cor-
responding refractive index (Fig. 3), thus without any discontinuities
over the frequency range considered.

REFERENCES

[1] Z. Szabó, G.-H. Park, R. Hedge, and E.-P. Li, “A unique extraction
of metamaterial parameters based on Kramers–Kronig relationship,”
IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2646–2653,
Oct. 2010.

[2] J. J. Barroso and U. C. Hasar, “Resolving phase ambiguity in the in-
verse problem of transmission/reflection measurement methods,” J. In-
frared Millim. Terahertz Waves, vol. 32, no. 6, pp. 856–866, Jun. 2011.

[3] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Elec-
tromagnetic parameter retrieval from inhomogeneous metamaterials,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol.
71, Mar. 2005, Art. ID 036617.

Comments on “ParAFEMCap: A Parallel Adaptive
Finite-Element Method for 3-D VLSI
Interconnect Capacitance Extraction”

Ozlem Ozgun, Raj Mittra, and Mustafa Kuzuoglu

The above paper [1] includes misleading statements on the accuracy
and the efficiency of our technique [i.e., the characteristic basis
finite-element method (CBFEM)], which was published in 2009 [2]
for the extraction of 3-D capacitance matrices. The above paper
[1] has devoted a separate section (i.e., Section II-B) to show the
alleged weaknesses of our technique through some 2-D simulations.
However, it seems that our technique was implemented erroneously
in [1]. First of all, we would like to give brief information about
our CBFEM technique, and then discuss why the claims in [1]
are completely wrong.

The CBFEM is a relatively novel approach introduced to alleviate
the difficulties of the conventional finite-element method (FEM) while
solving large-scale electromagnetic boundary value problems. This is
a matrix-reduction algorithm in the sense that it utilizes the strategy
of domain decomposition by transforming the original matrix into a
smaller one, referred to as the reduced matrix. For this purpose, char-
acteristic basis functions (CBFs) are employed, which are high-level
basis functions that are tailored in accordance with the physics of the
problem under consideration. The first application of the CBFEM was
to quasi-static problems, where it was used for the purpose of com-
puting the capacitance matrices of 3-D interconnect structures by em-
ploying point charges to generate the CBFs [2]. Next, it was extended
to the solution of electromagnetic scattering problems by using dipole-
type sources with different approaches [3]–[6].

In the implementation of the CBFEM in [2], fictitious point charges
are placed on the conductors, as shown in [2, Fig. 2]. The potentials
created by these charges form the natural basis functions (i.e., CBFs)
for the potential distribution within the entire computational domain.
In other words, if the charge density is known along the boundaries
of the conductors, then the potential distribution can be expressed
as a convolution of the charge density along the conductors with
the free-space Green’s function that can be simply expressed as
������. Afterwards, the CBFs are orthogonalized by using the
singular value decomposition (SVD) approach. A threshold is then
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