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The field lines of Poynting vector around a small particle are investigated on the basis of classical Mie
theory. A particle can effectively absorb incident energy near the optical resonance, where its optical absorption
cross-section becomes much greater than its geometrical cross-section. It is shown that absorbed energy flows
into the particle through some limited portion of its surface(“input window”) instead of the whole surface as
it follows from the dipole approximation. This “input window” expands with the increasing value of the
imaginary part«9 of the dielectric function of the particle. For a small«9 the absorbed energy is released by the
plasmon radiation. Interference of this radiation with the incident wave creates complex patterns of energy flux
in the near-field region. These patterns cannot be understood within the frame of a dipole approximation and
the terms of higher orders with respect to size parameterq=2pa/l (a is the radius of the particle andl is
radiation wavelength) should be taken into account.
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I. INTRODUCTION

The problem of light scattering by spherical particles has
an exact solution presented by the classical Mie theory.1–3

The fields around small particles are generally investigated
in terms of specific far-field quantities such as absorption,
scattering and extinction cross-sections or its far-field scat-
tering diagram. These far-field characteristics are sufficient
to explain the color of glasses(with embedded metallic
nanoclusters) and the absorption of colloids, characteristics
of the cosmic interstellar dust(Milky Way) and many other
effects in meteorology and optical tomography. More de-
tailed information follows from the analysis of near-field ef-
fects and the investigation of the energy flux(Poynting vec-
tor). Although this problem also refers to the classical
problem of electromagnetism, it continues to attract attention
until now; see, e.g., Refs. 4–7. Due to the development of
nanotechnologies this problem became especially important
lately due to the study of light scattering bysmall particles.
It is important for many modern applications, e.g., for field
concentration for nanopatterning,8–10 near-field optical mi-
croscopy and other studies,11–13 laser cleaning,14,15 high-Q
cavity devices,16–19 nonlinear optics in microspheres,20 sur-
face enhanced Raman scattering,21,22 plasmon resonance
coupling in nanowires,23 or within the chain of coupling
nanoparticles.11,18

In spite of the importance of the mentioned problems,
little attention has been paid to the investigation of the en-
ergy flux around small particles. To the best of our knowl-
edge, Bohren published the first work in this field in 1983
within the frame of dipole approximations.24 He demon-
strated that the energy flux in the vicinity of a small particle
deflects towards the particle from the surrounding area. The
graphic illustration in Ref. 24 presents the near-field problem
in a new impressive manner(field lines enter into the particle
not only from the front but also from the back “shadow”
side). As a result the particle can absorb much more radiation

than that given by the geometrical cross-section. This presen-
tation clearly explains the growth of the particle absorption
process for small«9 near plasmon resonance frequency,v
=vp, when«svpd=−2+i«9. It should be mentioned, accord-
ing to Ref. 24, that the absorption cross-section increases
inversely proportional to«9.

In spite of the successes with an explanation of the ab-
sorption problem in Ref. 24, some questions still remain un-
clear. For example, it is very questionable that the particle
absorbs incident energy through its whole surface, as shown
in Ref. 24. This question stems from the fact that the refrac-
tive index of the particlen=ReÎ«8+ i«9 with «8=−2 be-
comes smaller than 1 when«9,3.464. From the geometrical
optics point of view(when a particle is big compared tol),
some incident rays cannot “enter” the particle due to total
internal reflection. In other words, a particle with a small«9
value should absorb incident energy just through some “input
window” on its surface and this window should be smaller
and smaller with decreasing«9.

Another contradiction follows from certain peculiarities
of the resonant scattering by a very small particle. As it was
shown by Tribelsky,25 when the imaginary part of the per-
mittivity is small enough, a nondissipative damping of the
incident electromagnetic wave replaces the dissipative damp-
ing in the stabilization of divergence of the small particle
extinction (absorption) cross-section at the resonance point.
While the increase of the cross-section at the resonance is
related to transformation of the incident electromagnetic
wave into plasmons, the nondissipative damping is associ-
ated with the inverse transformation of the plasmons into the
scattered electromagnetic wave. Due to the nondissipative
damping the extinction cross-section remains finite up to the
limit «9=0. Although the field fluxes were not investigated in
Ref. 25, one can expect that this emission–reabsorption pro-
cess should produce the energy flux thatleaves and enters
the particle.
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Finally, metallic nanoparticles were successfully used for
nanopatterning.26,27 It indicates that these kinds of particles
should produce theoutward flux of energy in the near-field
region, i.e., along with the “input window” there should be
another “output window” for the energy flux.

To solve the contradiction with the incoming flux, which
can enter the particle from any direction, we have analyzed
this energy flux more precisely, taking into account the next
small term within the Mie series expansion. One should re-
member that the dipole approximation for the field has been
used in Ref. 24. The phase portrait of the energy flow that
comes from this approximation contains asingle saddle
point outside the particle(here we do not concern a singular
point inside the particle). It is shown that the “small pertur-
bation” which follows from the next term in the Mie series,
however, can change drastically this phase portrait wherefive
additional singular pointsarise(outside the particle). How-
ever this phase portrait is still not stable, i.e., the inclusion of
further terms in the Mie series changes this portrait qualita-
tively. With some sufficient number of terms a stable picture
is established. The number of these terms depends onq and
« values. Even when this number is small(e.g., 3–4 terms)
one should work beyond the dipole approximation to explain
the peculiarities of the phase portrait in the near-field region.
The stable energy flux for a small value of«9 demonstrates
“ input” and “output” energy windows on the particle surface,
as well as fluxes emitted and reabsorbed by the particle. The
last radiation field(similar to the evanescent wave) is con-
fined in a small region near the particle. With a sufficiently
big value of«9 stable flux is similar to those found by Bo-
hren with a dipole approximation in Ref. 24. In the interme-
diate region of parameter«9 other stable phase portraits with
different singularities within the Poynting vector field are
possible. The complex field patterns in the near-field region
of a small particle can be used for the enhancement of both
electric and magnetic fields.

II. ENERGY FLUX AND THE FIELD LINES OF THE
POYNTING VECTOR

Geometrical optics28 yields the simplest approach to un-
derstand the energy flux within the weakly absorbing media.
This approach is applicable for particles(radius a) with a
size significantly larger than the radiation wavelength, e.g.,
a@l. In this case the intensity distribution around the par-
ticle can be estimated using ray tracing according to Snell’s
law and energy conservation. For a particle with refractive
index 1,n,2 in vacuum, the refracted rays form a caustic15

under the particle. At plasmon resonance with«=−2+i«9,
one can see that within a big range of«9,3.464, the refrac-
tive index of the particlen=ReÎ« is smaller than one. For
such a case the vacuumsn=1d is an optically denser media
than the particle, which results in the total internal reflection
and some incident rays are thus forbidden to “enter” the par-
ticle, as shown in Fig. 1. For a small value ofn the “input
window” on the particle surface becomes very small. This
picture illustrates an interesting effect: a particle can transfer
energy from the near-field region to a far-field region just
through a very small “effective aperture,”y/a<arctann,

created by total internal reflection. The energy conversion by
this aperture can be significantly higher than that within the
scanning near-field optical microscope(SNOM) system,
where this conversion efficiency is 10−4–10−5.29 At the same
time the validity of geometrical optics is frustrated: with a
small aperture the diffraction effect should play an important
role. It is clear that absorption also frustrates total internal
reflection and the true scattering problem should be analyzed
on the basis of the Mie theory.

Examples of these calculations for the electric and mag-
netic fields are shown in Fig. 2. Plasmon are localized near
the surface.30 The fields distributions are typical for dipole
radiation. One can see that the electric field mainly concen-
trates along “left” and “right” surfaces, while the magnetic
field is localized near the “top” and “bottom” surfaces. This
picture however does not tell much about the peculiarities of
energy flux propagation. For this purpose we should calcu-
late the energy flux, i.e., the Poynting vector.

The Mie solution is based upon the expansion of the in-
cident wave, the scattered wave and the wave interior of the
particle into corresponding vector spherical harmonics. Simi-
lar to Ref. 24 we consider a vacuum media and a nonmag-
netic particle, i.e.,«m=mm=mp=1 («m and «p stand for the
permittivities of the media and the particle,mm and mp are

FIG. 1. (Color online) Rays tracing for a big particle witha
@l and refractive indexn=0.01. The incidence angleui outside of
the sphere and the refraction angleut inside the sphere are related
by ut=arcsinfsin ui /ng. The rays with input coordinate
y/a.arctansnd cannot enter into the particle due to the total inter-
nal reflection effect. Within the figure the caustics inside the particle
are shown for two subsequent reflections.
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their magnetic permeabilities) and the incident electric field
that is polarized along thex-axis and propagates along the
positivez direction. The incident plane wave has components
Ei =E0e

ikzêx and Hi =E0e
ikzêy, where wave vector k

=2 p c/l. Time dependencee−ivt is omitted and we also
consider the unit amplitudeE0=1. These incident fields in
spherical coordinates are given by

Er = eikr cos usin u cosw, Eu = eikr cos ucosu cosw,

Ew = − eikr cos usin w,

Hr = eikr cos usin u sin w, Hu = eikr cos ucosu sin w,

Hw = eikr cos u cosw. s1d

For fields scattered by a sphere with radiusa, the fields
can be expressed through electricePssd and magneticmPssd

Debye potentials:

rePssd = −
cosw

k2 o
,=1

`

eB, z,skrd P,
s1dscosud,

rmPssd = −
sin w

k2 o
,=1

`

mB, z,skrd P,
s1dscosud, s2d

whereP,
s1dscosud is an associated Legendre polynomial and

z,srd=Îpr /2 H,+1/2
s1d srd, is a Ricatti-Bessel function,

Hn
s1dsrd=Jnsrd+ i Nnsrd is the Hankel function. Coefficients

eBl and mBl are presented by

eB, = i,−1 2, + 1

,s, + 1d
a,,

mB, = i,−1 2, + 1

,s, + 1d
b,,

a, =
qp c,sqpd c,8sqd − q c,sqd c,8sqpd
q z,sqd c,8sqpd − qp z,8sqd c,sqpd

,

b, =
q c,sqpd c,8sqd − qp c,sqd c,8sqpd
qp z,sqd c,8sqpd − q z,8sqd c,sqpd

, s3d

where q=k a is the size parameter andqp=qÎ«p. c,srd
=Îpr /2 J,+1/2srd, whereJnsrd is the Bessel function. For a
small particle withq!1 one can see from the expansion of
the Bessel and Hankel functions that the electric amplitude
eB,,q2,+1 is much greater than the magnetic amplitude
mB,,q2,+3 (theq2,+1 term in mB, expansions is zero since it
is proportional tomp−mm). Expanding separately the nu-
merator and denominator ineB, with accuracy toq2,+1 terms
one can find the formula

eB, = i, q2,+1 «p − 1

fs2, − 1d ! ! g2H,2S«p +
, + 1

,
D

− i q2,+1 «p − 1

fs2, − 1d ! ! g2

, s, + 1d
2, + 1

J−1

. s4d

It is clear from Eq.(4) that for the exact,-th order reso-
nance, when«p=−s,+1d /, the amplitude tends to its limit-
ing valueeB,= i,+1s2,+1d /,s,+1d. This case corresponds to
“nondissipative damping,” as discussed in Ref. 25. In the
following, we will first discuss the first order plasmon reso-
nance with,=1, where Res«pd=−2. For Ims«pd@2q3 one
can use the approximation

eB1 = i
«p − 1

«p + 2
q3. s5d

The electric and magnetic fields scattered by a sphere can
be expressed by differentiation of Debye potentials:1

Er
ssd = S ]2

] r2 + k2Dsr ePd, Hr
ssd = S ]2

] r2 + k2Dsr mPd,

Eu
ssd =

1

r

]2

] u ] r
sr ePd +

ik

r sin u

]

] w
sr mPd,

FIG. 2. ElectricE2=E ·E* and magneticH2=H ·H* fields distributions within thexz-plane, calculated from the Mie theory for a sphere
with a size parameterq=2 p a/l=0.3 and dielectric function«=−2+0.2i. Incident electric fieldEsid is directed along thex-axis.
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Hu
ssd = −

i k

r sin u

]

] w
sr ePd +

1

r

]2

] u ] r
sr mPd,

Ew
ssd =

1

r sin u

]2

] w ] r
sr ePd −

ik

r

]

] u
sr mPd,

Hw
ssd =

ik

r

]

] u
sr ePd +

1

r sin u

]2

] w ] r
sr mPd. s6d

For a small particle the lowest order terms for the field
expansion are proportional toq3:

Er
ssd = 2

«p − 1

«p + 2
q3 eikr 1 − ikr

skrd3 sin u cosw, Hr
ssd = 0,

Eu
ssd =

«p − 1

«p + 2
q3 eikr − 1 + ikr + skrd2

skrd3 cosu cosw,

Hu
ssd =

«p − 1

«p + 2
q3 eikr i + k r

skrd2 sin w,

Ew
ssd = −

«p − 1

«p + 2
q3 eikr − 1 + ikr + skrd2

skrd3 sin w,

Hw
ssd =

«p − 1

«p + 2
q3 eikr i + k r

skrd2 cosu cosw. s7d

Within the far-field region, wherekr@1, Eqs.(7) produce
the usual fields for a dipole approximation[see, e.g., Eqs.
(88) in Chap. 14 of Ref. 1]. However we are interested in the
near-field region wherekr can be of the same order of mag-
nitude as the size parameterq.

The Poynting vectorS=sc/4pdE3H specifies the mag-
nitude and direction of the rate of transfer of electromagnetic
energy at all points of space.31,32 The total time-averaged
Poynting vector can be written as

kSl = kSil + kSsl + kSextl, s8d

where

kSil =
c

8p
Re sEi 3 Hi

*d, kSsl =
c

8p
ResEs 3 Hs

*d,

kSextl =
c

8p
ResEi 3 Hs

* + Es 3 Hi
*d.

Here kSil is the Poynting vector of the incident field and
kSsl that of the scattered field.kSextl can be interpreted as the
term which arises because of the interaction between the in-
cident and scattered fields. In thezx plane sw=0d, the w
component of vectorkSil is zero and the field lines are de-
scribed by the solutions to the differential equation

dr

du
= r

kSlr

kSlu

. s9d

Bohren24 considers that the Poynting vector related to the
scattered field does not affect Eq.(9) because ofkSls~q6.

The substitution of Eq.(7) into (8) and(9) yields the differ-
ential equation:

dr

du
= − r cot u

Fsnumd

Fsdend . s10d

Here r=r /a, functions Fsnumd=ok=0
3 gkr

k and Fsdend

=ok=0
3 hkr

k present polynomials with the highest term, which
grows asr3 at infinity, r→`. Coefficientsgk and hk are
given by

g0 = − sKrcosj + Ki sin jd,

g1 = qscosu + 1dsKrsin j − Kicosjd,

g2 = q2scosu + 1dsKrcosj + Ki sin jd, g3 = 1, s11d

and

h0 = 2 sKrcosj + Ki sin jd,

h1 = q scosu − 2d sKrsin j − Kicosjd,

h2 = q2cosu sKrcosj + Ki sin jd, h3 = 1. s12d

[The scattered fieldkSls yields additional termq4cosusKr
2

+Ki
2d in g1. This term has no important influence on the

phase portrait.]
Following Ref. 24 we use notations«p−1d / s«p+2d;Kr

+ iKi, andj=qrscosu−1d. In regions far from the particle,
where r@1, Eq. (10) yields parallel Poynting vector lines
with conserved coordinatex=r sin u=const. The picture
with the field lines according to Eq.(9) is presented in Fig. 3.
This picture presents the phase portrait of the field lines with
one singular point of the saddle type.(Another singular point
is situated inside the particle. This point is, in fact, fictive
because Poynting vector inside the particle is given by a
different differential equation. Nevertheless one should re-
member about this point just to escape confusion with a
variation of the Poincare index.) This saddle point(hereinaf-
ter referred to as the Bohren saddle point) is situated behind
the particle atx=0 and z=2.97. The separatrix that goes
thought this point separates different types of field lines. All
the field lines under the separatrix enter the particle. A simi-
lar situation is typical for the field lines of a point charge
moving in a constant electric field(see Fig. 1–Fig. 3 in Ref.
4).

The field lines which enter the particle correspond to the
radial component of the Poynting vector atr =a. Under the
Bohren approximation the value of the field enhancement is
given by

kSrsudl
kSilz

= − cosu s− 1 +uccosj − ussin jd,

uc = s1 − q2dKr + qKi + qsKi − qKrdcosu,

us = qKr − s1 − q2dKi + qsKr + qKidcosu. s13d

On the right part of Fig. 3 we presented these radial field
lines (lengths are proportional toSr) that enter the particle
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from all directions, from the front and from the backside
(“shadow” region).

III. FIELD LINES OF THE POYNTING VECTOR BEYOND
THE DIPOLE APPROXIMATION

It is clear that with an increasing value of the size param-
eter q one should take more than one term within the Mie
series to reach a desirable accuracy. The recommended num-
ber of terms as given in Ref. 2 islmax=q+4.3 q1/3+1. It
means that the “true” Poynting field pattern should be calcu-
lated with sufficient order of scattered partial waves, e.g., for
q=0.3 one should take four terms. In Fig. 4 we present the
distribution of the Poynting vector componentSZ within the
xy plane atz/a=1 (at the top of particle) and z/a=−1 (be-
hind the particle at the “shadow” region). Calculations are
performed withq=0.3 and other parameters are the same as
in Fig. 3. All the necessary terms within the Mie series are
taken into account. Figure 4 demonstrates an evident contra-
diction with the flux shown in Fig. 3. Namely, in the regions
near the centerx=y=0 the energy flux enters the particle
through the “input window” [Fig. 4(a)] and leaves the par-
ticle through the “output window” [Fig. 4(b)]. The discrep-
ancy between Figs. 3 and 4 looks like a paradox, which
demonstrates that the dipole approximation is not applicable
for a small particle.

To examine the influence of higher order partial waves,
we take the second term within the Mie series and analyze
the effect of the next small term in the field expansion. For
this purpose one should consider the fields with terms pro-
portional toq5. These contributions arise from the first and
second terms within the Mie series and one may writeEssd

=E1sq3d+E1sq5d+E2sq5d. TermsE1sq3d are given by Eq.(7)

and termsE1,2sq5d [and similar terms in magnetic field
H1,2sq5d] are given in the Appendix.

ComparingEu components in Eq.(7) and Eq.(A1) for
small q and «9 (with «p=−2+i«9) one can find
uEu

1sq5d /Eu
1sq3du<2.4 q2/«9. It means that smallq2 value can

be compensated by an even smaller«9 value. Forq=0.3 both
terms yield the same contribution at«9=0.22. It means that
during the approach from dissipative damping to nondissipa-
tive damping the dipole approximation(with q3 terms only)
is insufficient. Thus we look for the next term in the expan-
sion.

FIG. 3. Field lines of the Poynting vector found from Eq.(10) in the regions around a small particle with a size parameterq=0.3 and
permittivity «p=−2+0.2i. On the right part of the figure the arrows present the radial component of the Poynting vector which enters the
particle according to Eq.(13). Lengths of the arrows are proportional to theSr value.

FIG. 4. (Color online) Distribution of thez-component of the
Poynting vector within thexy-plane at(a) z/a=−1 (plane for in-
coming radiation) and (b) z/a=1 (plane for outgoing radiation).

ENERGY FLOW AROUND A SMALL PARTICLE… PHYSICAL REVIEW B 70, 035418(2004)

035418-5



The laborious task to derive the differential equation(9)
with scattered fields(7), (A1), and (A2) was done with the
help of “MATHEMATICA ” software.33 Within thexz-plane(i.e.,
w=0) this equation is presented in the form of Eq.(10),
where the numeratorFsnumd=ok=0

4 ukr
k and denominator

Fsdend=ok=0
4 wkr

k are given by the fourth order of polynomials
(with respect tor). This equation is also presented in the
Appendix.

The field pattern according to this equation is shown in
Fig. 5. One can see that a “small perturbation” related to
higher order terms of aq value destroys the phase portrait in
Fig. 3. The old Bohren’s saddle point is stable, but moves up
on the phase plane tox=0 and z=4.28. Nevertheless the
behavior of separatrices that crossed this saddle point is now
completely different. Moreover five additional singular
points arise on the phase portrait in Fig. 5: three saddles and
two foci [we changed the Poincare index by 2 during bifu-
racation(because of the singular point inside the particle)].
Two new saddle points(at z=0 andx= ±3.92) control the
flux, which enters the particle. Only field lines under separa-
trices from these saddle points enter the particle. As a result
the energy enters the particle through a limited portion of
surface (“ input window” ) instead of the whole surface as
shown in Fig. 3. The third saddle point behind the particle
(situated close to the surface atx=0 andz=1.25) introduces
the separatrix that separates field lines emitted and reab-
sorbed by the particle. This energy flux corresponds to the
field that is emitted by plasmon in the case of a nondissipa-
tive damping effect. It is interesting that this field is localized
in a small region that is comparable with the particle size.

Two foci (“energy vortices”) are situated symmetrically
sx= ±2.25d at a distancez=2.48 behind the particle. They
present the energy sources for the field lines in surrounding
regions. Some of these field lines go to the particle and oth-
ers go to the shadow region behind the particle(atz.4). The

distribution of these fluxes is controlled by separatrices from
the Bohren saddle point. In the three-dimensional(3-D) case
it can be seen that these points are the saddle-focuses, i.e.,
the energy comes from perpendicular directions as it is
shown in Fig. 4(inset). In fact, similar optical vortices are
known for the case of the speckle field produced by the in-
terference of a plane wave with a Gaussian beam.34

The natural question arises: is this phase portrait stable or
will it change further when the higher-order partial waves are
taken into account. An analytical equation for this case be-
comes too complicated but we can easily analyze this prob-
lem numerically. After a series of calculations forq=0.3 and
«9=0.2 we found that phase portrait in Fig. 5 is also unstable.
It becomes stable(i.e., it does not change further qualita-
tively) when the number of terms within the Mie series is
equal to four. This stable pattern is presented in Fig. 6(a).
One can see that this picture is quite simple; it contains the
input and output windows for energy flux and waves, which
present fluxes emitted by plasmon. In fact we expect a simi-
lar picture from the general physical consideration. It is in-
teresting to note that down-directed fluxes of plasmon emis-
sion are concentrated in the surrounding of thexz-plane. In
the yz-plane[see in Fig. 6(b)] all energy fluxes are directed
up.

According to catastrophe theory,35,36 the number of terms
which one should take into account within the polynomials
in the right hand part of Eq.(10) should satisfy the principal
of “structural stability,” i.e., the phase portrait should not
change qualitatively with the addition of small perturbations
arising from the higher-order terms of the Mie series. Natu-
rally, a sufficient number of terms depends on theq and «p
values.

Performing calculations based on an exact Mie solution
and with an accuracy of expansion higher thanq6 one should
take into account the field fluxSs in Eq. (8), related to the
scattered wave. We found that with 0,«9,1 the number of

FIG. 5. (Color online) The same as in Fig. 3,
but with the inclusion ofq5 terms for the scat-
tered wave. Inset demonstrates 3-D phase trajec-
tories near the saddle-focus point.
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terms given by,max=q+4.3 q1/3+1 satisfies the condition of
phase portrait stability. In Fig. 7 one can see variations of the
input window for the energy flux. As«9 decreases, the ab-
sorption cross-section of the particle increases while the in-
put window shrinks. On the contrast, the output window is
almost fixed for small values of«9.

A few stable field patterns were identified forq=0.3 and
«9within the range 0,«9,1. Patterns in Fig. 8 illustrate the
energy fluxes when«9=0. These patterns are of the same

type as Fig. 6 with symmetry between the input and output
fields. In exact plasmon resonance«=−2 (Fig. 8 a) the scat-
tering cross-section reaches its maximal value, which is not
infinite. Out of resonance(Fig. 8 b) the picture is similar, but
with a smaller cross-section. Negative(down-directed) flux
emitted by plasmon is confined by a “banana”- shaped three-
dimensional surface. We call these fluxes “Tribelsky ears”
because they correspond to the nondissipative damping
effect.25 The cross-section of this energy flux structure by the
xy-plane(through the particle center atz=0) is shown in Fig.
9.

To analyze transforms on phase portraits we use the stan-
dard methods of the theory of nonlinear oscillations.37 First
we search for the singular(stationary) points r s,us, which
are the roots of equations for zero-isoclines:kSsr ,udlr =0 and
kSsr ,udlu=0. These roots depend on parametersq and «9.
Solution rs=rss«9d for q=0.3 is presented in the central port
of Fig. 10. On the right picture the trajectories of the singular
points on thexz-plane with a variation of«9 parameter are
shown. One can see along the«9 parameter the regions with
a different number of singular points.

(I) The first region 0,«9,0.2892 corresponds to a sin-
gular rootr=rs/a. This value varies from 3.4 to 2.1 within
the discussed region(and continues to the particle surface
r=1with higher values of«9). This root however is degener-
ated; it corresponds to two different values ofus. On the right
picture in Fig. 10 the trajectories of these singular points start
at valuesx/a= ±3.4 and continue to particle surface(which
they reach at«9=0.58). Within the first region the phase
portrait contains two saddles(see phase portraits on the top
part of Fig. 10). This phase portrait is similar to those shown
in Fig. 8. Separatrices within the phase portrait clearly indi-
cate the regions with input and output windows and the re-
gions with plasmon emission–reabsorption fluxes).

(II ) The second region with 0.2892,«9,0.322 is char-
acterized by three roots with differentr values. An upper

FIG. 6. (Color online) (a) The field lines of the Poynting vector in thexz-plane calculated from the Mie theory for a particle with a size
parameterq=0.3 and permittivity«p=−2+0.2i. The number of terms for the calculation was taken according to,max=q+4.3 q1/3+1. The
surface-input window and surface-output window can be seen.(b) Field lines for the same parameters but in theyz-plane.

FIG. 7. (Color online) Variations in the surface-input window
and surface-output window(in the xz-plane) for a particle with a
size parameterq=0.3 and«p=−2+i«9 where«9 ranges from 10−5 to
0.2.
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(degenerate) root continues trajectories of saddles within the
first region and two additional roots move along thez-axis
sx=0d; see the right picture in Fig. 10. These points arise
above the surface atz/a=1.37 and then move in different
z-directions. The “intermediate” root which corresponds to
an unstable node(saddle-node in 3-D space, the energy
comes to this point from directions perpendicular to the pic-
ture) moves up. The root with the smallestr value is of the
saddle-type; it moves down along thez-axis and reaches the
particle surface at«9=0.322. One can see a typical phase
portrait at«9=0.3 on the upper part of Fig. 10. The existence
of the saddle point singularities in wave fields is well known
within the theory of the wave front dislocations.34,38 The
only difference is that these singularities were previously dis-
cussed for the distribution of electric field while we consider
the distribution of the energy flux.

(III ) The third region with 0.322,«9,0.54 is also char-
acterized by three roots with differentr values. But these
roots are qualitatively different from the second region. At
«9=0.322 one saddle point disappears(enters into the par-
ticle) while the node point is converted into the saddle and

focus. The saddle point continues the branch of the roots
which moves along the z-axes, while the branch with focus-
type singular points is degenerated, it corresponds to two
unstable foci(saddle-focus in 3-D space, the energy comes to
this point from the directions perpendicular to the picture).
On the right picture Fig. 10 the trajectories of these singular
points correspond to two arcs above the particle, they con-
tinue till the particle surface(which they reach at«9=0.54).
The typical phase portrait for this region is presented in Fig.
10 for «9=0.37. The behavior of fluxes in the vicinities of
foci is similar to optical vortices, which were analyzed in
many papers; see, e.g., Refs. 34, 39, and 40. But once again
these singularities were previously discussed for the distribu-
tion of an electric field while we consider the distribution of
the Poynting vector field. With an increase of an«9 param-
eter the foci move to the surface(which they reach at«9
=0.54). The phase portrait at«9=0.48 illustrates this motion.

(IV ) The fourth region with 0.54,«9,0.58 is character-
ized by three saddle type points. The phase portrait for«9
=0.55 is shown at the bottom of Fig. 10. When the foci from
region III enter the particle one can see on the top of the
particle an emission–reabsorption process for plasmon.

(V) At «9.0.58 two side’s saddles from region IV dis-
appear and the phase portrait has a single saddle point above
the particle. Thus, for big dissipation we return to the Bo-
hren’s picture of flux, similar to those in Fig. 3.

One can see that an energy flux for a small particle has a
number of bifurcations in the vicinity of plasmon resonance
«8=−2 with variation of dissipation parameter«9. All of
these bifurcations in the vector fields are quite general, simi-
lar bifurcations were found at wave front dislocations in the
distribution of electric vector field(e.g. saddle,38 focus,34,39,40

node41). It is easy to verify that the Poynting vector fulfills
the conservation law

div S= 0; s14d

this follows from the Maxwell equations. Thus vector field
S1=curl Asr ,u ,wd fulfills Eq. (14) with arbitrary vectorA

FIG. 8. Field lines in thexz-plane for a particle with a size parameterq=0.3 and permittivity«9=0. (a) «8=−2 (plasmon resonance); (b)
«8=−1 (off-plasmon resonance).

FIG. 9. (Color online) Contour plot of theSZ component of the
energy flux in anxy-plane atz=0. Negative energy flux(marked by
the minus signs) is confined within two “tubes.”
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=Asr ,u ,wd. Another part is scalar fieldusr ,u ,wd, which
should fulfill the Laplace equation:Du=0. Then vectorS2
=gradusr ,u ,wd also fulfills Eq. (14). The construction of
suitable vectors through electric and magnetic fields is quite
complicated. For the case of cylindrical symmetry this prob-
lem was discussed in Ref. 42.

In conclusion, we have to add that the scattering of light
by a small particle with plasmon resonance is attractive for
applications in nanopatterning. For example, the nondissipa-
tive case is attractive for the generation of big electric and
magnetic fields under the particle with plasmon resonance.
For q 5 0.3 and«9=0 maximal value of thez-component of

FIG. 10. (Color online) Field lines in thexz-plane for a particle with plasmon resonance«8=−2 and size parameterq=0.3. The central
part of the picture presents stationary points and their trajectories versus«9.
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the Poynting vector under the particle can reachSZ<13,
while enhancements of corresponding electric and magnetic
fields areE2<200 andH2<15.

IV. CONCLUSION

To describe the energy flux around the small particle near
plasmon resonance the usual dipole approximation could be
insufficient, because it produces an unstable energy flux.
Such a situation arises for the case with small dissipation,
when «=−2+i«9 and «9!1. Depending on the relation be-
tween the size parameterq!1 and«9, one should take into
account more terms within the Mie series. Within the region
of parameters that we used in calculations the stable phase
portrait for the energy flux was reached when the number of
terms were given by,max=q+4.3 q1/3+1. The nondissipative
case with«9=0 is characterized by input and output windows
for the energy flux on the surface of the particle. With higher
dissipation one can see a complex pattern of the energy flux
in the vicinity of the particle. With big dissipation the energy
flux enters the particle from any direction, i.e. one returns to
the picture, typical for the dipole approximation. The case

with nondissipative damping would be attractive for many
applications. It permits us to generate sufficiently high elec-
tric and magnetic fields in nanoscale around the particle in
the near-field region.
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APPENDIX:

Here we present the terms proportional toq5 in electric
and magnetic fields. These contributions arise from the first
and second terms within the Mie series:Essd=E1sq3d
+E1sq5d+E2sq5d. Terms E1sq3d are given by Eq.(7) and
termsE1,2sq5d are given by

Er
1sq5d =

6

5

«p − 1

s«p + 2d2q5 eikr 1 − ikr

skrd3 s«p − 2dsin u cosw,

Er
2sq5d =

i

2

«p − 1

2«p + 3
q5eikr 3 − 3ikr − skrd2

skrd4 sin 2u cosw,

Eu
1sq5d =

1

30

«p − 1

s«p + 2d2q5eikr fikr + skrd2g s«p + 2d2 + 18f− 1 + ikr + skrd2gs«p − 2dcosu

skrd3 cosw,

Eu
2sq5d =

1

6

«p − 1

2«p + 3
q5eikr − 6i − 6kr + 3iskrd2 + skrd3

skrd4 cos 2u cosw,

Ew
1sq5d = −

1

30

«p − 1

s«p + 2d2q5 eikr 18f− 1 + ikr + skrd2gs«p − 2d + fikr + skrd2g s«p + 2d2cosu

skrd3 sin w,

Ew
2sq5d = −

1

6

«p − 1

2«p + 3
q5 eikr − 6i − 6kr + 3iskrd2 + skrd3

skrd4 cosu sin w. sA1d

Similar terms in magnetic fieldH1,2sq5d are given by

Hr
1sq5d =

«p − 1

15
q5 eikr 1 − ikr

skrd3 sin u sin w, Hr
2sq5d = 0,

Hu
1sq5d =

1

30

«p − 1

s«p + 2d2q5eikr 18fikr + skrd2gs«p − 2d + f− 1 + ikr + skrd2gs«p + 2d2cosu

skrd3 sin w,

Hu
2sq5d =

1

6

«p − 1

2«p + 3
q5 eikr − 3 + 3ikr + skrd2

skrd3 cosu sin w,

Hw
1sq5d =

1

30

«p − 1

s«p + 2d2q5eikr f− 1 + ikr + skrd2gs«p + 2d2 + 18fikr + skrd2gs«p − 2dcosu

skrd3 cosw,
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Hw
2sq5d =

1

6

«p − 1

2«p + 3
q5 eikr − 3 + 3ikr + skrd2

skrd3 cos 2u cosw. sA2d

Within thexz-plane(i.e., w=0) differential equation(9) is
presented in the form of Eq.(10), where the numerator
Fsnumd=ok=0

4 ukr
k and denominatorFsdend=ok=0

4 wkr
k are given

by the fourth order of polynomials(with respect tor). We
present coefficients for the case where«p=−2+i«9. Strokes
in «9 are omitted within the long formulas(A3) and (A4).
The coefficients for the numerator are given by

u0 = u0
1q, u1 = u1

0 + u1
2q2, u2 = u2

1q + u2
3q3,

u3 = u3
2q2 + u3

4q4, u4 = 1. sA3d

Here termsui
k are the coefficients at different orders ofqk.

They are equal to

u0
1 = p coss2udsecuf5« cosj − s3 + 2«2dsin jg,

u1
0 = − cosj −

3

«
sin j,

u1
2 = −

p

30«2s3uc1cosj + «us1sin jd,

uc1 =
− 72 + 5«2

p
+ 5«2s3 + 2«2ds2 + cosudcoss2udsecu,

us1 =
126 +«2

p
+ 75«2s2 + cosudcoss2udsecu,

u2
1 = 2cos2

u

2
S−

3

«
cosj + sin jD ,

u2
3 =

p

15«2cos2
u

2
secus « uc2cosj + 3 us2sin jd,

uc2 = −
«2 + 126 cosu

p
− 75«2coss2ud,

us2 =
− «2 + 6s− 12 +«2dcosu

p
+ 5«2s3 + 2«2dcoss2ud,

u3
2 = 2 cos2

u

2
Scosj +

3

«
sin jD ,

u3
4 =

p

15«2cos2
u

2
secus uc3cosj + « us3sin jd,

uc3 =
3

p
f− «2 + 6s− 12 +«2dcosug + 5«2s3 + 2«2dcoss2ud,

us3 =
«2 + 126 cosu

p
+ 25«2coss2ud,

wherep=s1+4«2d−1.
Coefficientswk for denominator have a similar form:

w0 = w0
1q, w1 = w1

0 + w1
2q2, w2 = w2

1q + w2
3q3,

u3 = w3
2q2 + w3

4q4, w4 = 1. sA4d

wherewi
k functions are presented by

w0
1 = 3 p cosuf− 5« cosj + s3 + 2«2dsin jg,

w1
0 = 2 cosj +

6

«
sin j,

w1
2 = −

p

30«2s3 wc1 cosj + « ws1 sin jd,

wc1 = 144 + 563«2 − 52«4 + 5«2s3 + 2«2df− 6 cosu

+ coss2udg,

ws1 =
− 252 +«2

p
+ 75«2f− 6 cosu + coss2udg,

w2
1 = s− 2 + cosudS−

3

«
cosj + sin jD ,

w2
3 =

p

30«2s− « wc2cosj + 3 ws2sin jd,

wc2 = −
− 252 +«2

p
+ 6s21 + 59«2dcosu + 75 «2coss2ud,

ws2 = 144 + 563«2 − 52 «4 + 4s− 18 − 78«2 + «4dcosu

+ 5«2s3 + 2«2dcoss2ud,

w3
2 = cosuScosj +

3

«
sin jD ,

w3
4 =

p

30«2s wc3cosj + « ws3sin jd,

wc3 =
3

p
f− «2 + 6s− 12 +«2dcosug + 5«2s3 + 2«2dcoss2ud,
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ws3 =
«2 + 126 cosu

p
+ 25«2coss2ud.

Substituting(A3) and(A4) into the formulas for numera-
tor Fsnumd and denominatorFsdend one can derive differential
equation for the field lines.
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