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Energy flow around a small particle investigated by classical Mie theory
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The field lines of Poynting vector around a small particle are investigated on the basis of classical Mie
theory. A particle can effectively absorb incident energy near the optical resonance, where its optical absorption
cross-section becomes much greater than its geometrical cross-section. It is shown that absorbed energy flows
into the particle through some limited portion of its surf@iaput window”) instead of the whole surface as
it follows from the dipole approximation. This “input window” expands with the increasing value of the
imaginary part” of the dielectric function of the particle. For a smellithe absorbed energy is released by the
plasmon radiation. Interference of this radiation with the incident wave creates complex patterns of energy flux
in the near-field region. These patterns cannot be understood within the frame of a dipole approximation and
the terms of higher orders with respect to size parangte27al/\ (a is the radius of the particle and is
radiation wavelengthshould be taken into account.
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I. INTRODUCTION than that given by the geometrical cross-section. This presen-

The problem of light scattering by spherical particles hadation clearly explains the growth of the particle absorption
an exact solution presented by the classical Mie th&gry. Process for smalk” near plasmon resonance frequeney,
The fields around small particles are generally investigated @p Whene(wp)==2+ie". It should be mentioned, accord-
in terms of specific far-field quantities such as absorptioning to Ref. 24, that the absorption cross-section increases
scattering and extinction cross-sections or its far-field scatinversely proportional ta”.
tering diagram. These far-field characteristics are sufficient In spite of the successes with an explanation of the ab-
to explain the color of glassegvith embedded metallic sorption problem in Ref. 24, some questions still remain un-
nanoclustefsand the absorption of colloids, characteristicsclear. For example, it is very questionable that the particle
of the cosmic interstellar dugMilky Way) and many other absorbs incident energy through its whole surface, as shown
effects in meteorology and optical tomography. More de-in Ref. 24. This question stems from the fact that the refrac-
tailed information follows from the analysis of near-field ef- tive index of the particlen=Re/s’ +ie” with &¢'=-2 be-
fects and the investigation of the energy fliBoynting vec- comes smaller than 1 wheti<3.464. From the geometrical
tor). Although this problem also refers to the classicaloptics point of view(when a particle is big compared 19,
problem of electromagnetism, it continues to attract attentiosome incident rays cannot “enter” the particle due to total
until now; see, e.g., Refs. 4—7. Due to the development ointernal reflection. In other words, a particle with a snll
nanotechnologies this problem became especially importanalue should absorb incident energy just through soimgut
lately due to the study of light scattering bynall particles  window’ on its surface and this window should be smaller
It is important for many modern applications, e.g., for field and smaller with decreasing.
concentration for nanopatternifigt® near-field optical mi- Another contradiction follows from certain peculiarities
croscopy and other studiés!® laser cleaning®'® high-Q  of the resonant scattering by a very small particle. As it was
cavity deviceg®-1° nonlinear optics in microspheréssur-  shown by Tribelsky®> when the imaginary part of the per-
face enhanced Raman scatterfhg? plasmon resonance mittivity is small enough, a nondissipative damping of the
coupling in nanowire$® or within the chain of coupling incident electromagnetic wave replaces the dissipative damp-
nanoparticled!18 ing in the stabilization of divergence of the small particle

In spite of the importance of the mentioned problems,extinction (absorption cross-section at the resonance point.
little attention has been paid to the investigation of the enWhile the increase of the cross-section at the resonance is
ergy flux around small particles. To the best of our knowl-related to transformation of the incident electromagnetic
edge, Bohren published the first work in this field in 1983wave into plasmons, the nondissipative damping is associ-
within the frame of dipole approximatiod$.He demon- ated with the inverse transformation of the plasmons into the
strated that the energy flux in the vicinity of a small particle scattered electromagnetic wave. Due to the nondissipative
deflects towards the particle from the surrounding area. Thdamping the extinction cross-section remains finite up to the
graphic illustration in Ref. 24 presents the near-field probleniimit £”=0. Although the field fluxes were not investigated in
in a new impressive mannéfield lines enter into the particle Ref. 25, one can expect that this emission—reabsorption pro-
not only from the front but also from the back “shadow” cess should produce the energy flux thesives and enters
side). As a result the particle can absorb much more radiatiorthe particle.
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Finally, metallic nanoparticles were successfully used for n = 0.01
nanopatterning®?’ It indicates that these kinds of particles SOV (, T

should produce theutwardflux of energy in the near-field .
region, i.e., along with theifiput window there should be L5 oo 7
another ‘dutput window for the energy flux. NUERNTERREIE “ ‘ Y ¥
To solve the contradiction with the incoming flux, which O \ | ] N7
can enter the particle from any direction, we have analyzed RO ’ N
this energy flux more precisely, taking into account the next SRR 4 :
small term within the Mie series expansion. One should re-
member that the dipole approximation for the field has been
used in Ref. 24. The phase portrait of the energy flow that
comes from this approximation contains single saddle
point outside the particl¢here we do not concern a singular
point inside the particle It is shown that the “small pertur-
bation” which follows from the next term in the Mie series,
however, can change drastically this phase portrait wireze
additional singular pointsarise (outside the particle How-
ever this phase portrait is still not stable, i.e., the inclusion of
further terms in the Mie series changes this portrait qualita-
tively. With some sufficient number of terms a stable picture
is established. The number of these terms depends ard
e values. Even when this number is sm@llg., 3—4 termys
one should work beyond the dipole approximation to explain
the peculiarities of the phase portrait in the near-field region.
The stable energy flux for a small value &f demonstrates
“input” and “output energy windows on the particle surface,
as well as fluxes emitted and reabsorbed by the particle. The
last radiation field(similar to the evanescent wavis con- FIG. 1. (Color online Rays tracing for a big particle with
fined in a small region near the particle. With a SUﬁiCiemly>)\ and refractive index1=0.01. The incidence anglg outside of

big value ofe” stable flux is similar to those found by Bo- he sphere and the refraction angleinside the sphere are related
hren with a dipole approximation in Ref. 24. In the interme-p,y g =arcsifisin 6/n]. The rays with input coordinate
diate region of parameter’ other stable phase portraits with y/a> arctarin) cannot enter into the particle due to the total inter-
different singularities within the Poynting vector field are nal reflection effect. Within the figure the caustics inside the particle
possible. The complex field patterns in the near-field regiorre shown for two subsequent reflections.

of a small particle can be used for the enhancement of both
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electric and magnetic fields. created by total internal reflection. The energy conversion by
this aperture can be significantly higher than that within the
Il. ENERGY FLUX AND THE FIELD LINES OF THE scanning near-field optical microscog&NOM) system,
POYNTING VECTOR where this conversion efficiency is 18-1075.2° At the same

time the validity of geometrical optics is frustrated: with a

Geometrical optic® yields the simplest approach to un- small aperture the diffraction effect should play an important
derstand the energy flux within the weakly absorbing mediarole. It is clear that absorption also frustrates total internal
This approach is applicable for particlesdiusa) with a  reflection and the true scattering problem should be analyzed
size significantly larger than the radiation wavelength, e.g.on the basis of the Mie theory.
a>\. In this case the intensity distribution around the par- Examples of these calculations for the electric and mag-
ticle can be estimated using ray tracing according to Snell'sietic fields are shown in Fig. 2. Plasmon are localized near
law and energy conservation. For a particle with refractivethe surfacé® The fields distributions are typical for dipole
index 1<n< 2 in vacuum, the refracted rays form a caustic radiation. One can see that the electric field mainly concen-
under the particle. At plasmon resonance with-2+ie”,  trates along “left” and “right” surfaces, while the magnetic
one can see that within a big ranges§f< 3.464, the refrac- field is localized near the “top” and “bottom” surfaces. This
tive index of the particlen=Reye is smaller than one. For picture however does not tell much about the peculiarities of
such a case the vacuufn=1) is an optically denser media energy flux propagation. For this purpose we should calcu-
than the particle, which results in the total internal reflectionlate the energy flux, i.e., the Poynting vector.
and some incident rays are thus forbidden to “enter” the par- The Mie solution is based upon the expansion of the in-
ticle, as shown in Fig. 1. For a small value mftthe “input  cident wave, the scattered wave and the wave interior of the
window' on the particle surface becomes very small. Thisparticle into corresponding vector spherical harmonics. Simi-
picture illustrates an interesting effect: a particle can transfelar to Ref. 24 we consider a vacuum media and a nonmag-
energy from the near-field region to a far-field region justnetic particle, i.e.gn=um=up=1 (e and g, stand for the
through a very small “effective aperturey/a= arctann, permittivities of the media and the particle,, and u,, are
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FIG. 2. ElectricE?=E-E" and magneti¢i?=H -H" fields distributions within thecz-plane, calculated from the Mie theory for a sphere
with a size parametag=2 7 a/A=0.3 and dielectric functioe=-2+0.2i. Incident electric fielcE" is directed along the-axis.

their magnetic permeabilitigsnd the incident electric field q (g ¥(Q) —ap ¥e(a) (g
that is polarized along thg-axis and propagates along the = () lﬂ;( )= q 2/ Pl | 3
positivez direction. The incident plane wave has components Gp 54D ¥elGp) ~ G 6(Q) ¥elCp

Ei=E,*%®, and H,;=E,*?%, where wave vectork
=2 7 ¢/\. Time dependence! is omitted and we also
consider the unit amplitud&y=1. These incident fields in
spherical coordinates are given by

where g=k a is the size parameter anqlp:q\s’g—p. be(p)
=\mpl2 Jo15(p), whereJ,(p) is the Bessel function. For a
small particle withg<1 one can see from the expansion of
the Bessel and Hankel functions that the electric amplitude

E =€¥ ©%in g cose, E,=€" “’os cose, ®B,~q%*! is much greater than the magnetic amplitude
A MB, ~ g?‘*3 (the g?**! term in B, expansions is zero since it
E,= — " cosfgin o, is proportional tou,-um). Expanding separately the nu-
. ‘ merator and denominator fi, with accuracy tag*** terms
H, =k ¢S %in g sing, H,=ek ©S%os 6 sin ¢, one can find the formula
_ ik
H, =X % cos . () B, =i¢ q2*! gp—1 { 2( p+€+1>
2
For fields scattered by a sphere with radajghe fields [(2€-1)t1] ¢
can be expressed through electti¢'® and magnetic¢™1 . ep=1 € (+1) |
Debye potentials: -iq '+l[(2€ SDUP 2041 (4)
FeIT = — @2 e, ¢,(kr) P{Y(cos 6), It is clear from Eq.(4) that for the exact-th order reso-
ke =1 ’ nance, where,=—(£+1)/¢ the amplitude tends to its limit-
ing value®B,=i"*%(2¢+1)/£(¢£+1). This case corresponds to
i * “nondissipative damping,” as discussed in Ref. 25. In the
mrr(s) SNEe m D X e ; X
rre = - ?E B, Le(kr) Py (cos6), (2)  following, we will first discuss the first order plasmon reso-
f=

nance with{=1, where Rée,)=-2. For In(sp)>2q3 one
whereP!"(cos 6) is an associated Legendre polynomial and®an Use the approximation
L(p)=\mpl2 Hﬁ)l/z(p), is a Ricatti-Bessel function,

Hff)(p):\]n(p)ﬂ N,(p) is the Hankel function. Coefficients B, = iflﬁqi%_ (5)
eB, and™B, are presented by ept2
20+ 1 The electric and magnetic fields scattered by a sphere can
-1
Be=i' e+ ac, be expressed by differentiation of Debye potentlals:
mp -1 26*1 E(S):<a—2+k2>(r °Il) H(S):<a—2+k2>(r "MT)
P e ™ T \ar? Cor  ar? '
.= Op ¥e(dp) ,‘ﬁe(Q) -q ‘/’/{(Q) W(Qp), £ _1 v ¥ + ik i(r -
q e(a) #(ap) = dp £e(A) e(ap) " T ro6ar rsin@ade ’
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© ik o - P The substitution of Eq(7) into (8) and(9) yields the differ-
Hy =- sin exp( 1) + oo (r ™), ential equation:
dp F(num)
— ==p COt O—gary
E(S) = 1 & ( ) _ %i(r mH) deo pco F(der) (10)
® rsinfdear 3 d
Here Pz r/a, functions Fm™=33 g0k and F@en
ik g ) —Ek 0hkp present polynomials with the highest term, which
|-|<S): ——(r e[T) + — (r ™). (6)  grows asp® at infinity, p— . Coefficientsg, and hy are
rsinfdedr given by
For a small particle the lowest order terms for the field o= — (K,COS£+K; sin &)

expansion are proportional o

E® = 28 + 20 g’ i (k .)lérsin 6cose, H®=0, 91 =q(cosf+ L)(Ksin - Kicos ),
P g,=0%(cos 6+ 1)(K,cosé+K; siné), gs=1, (11)
EY = - ; 3 gL +2i:; k0" s 0 cose, and
hyg=2 (K,cosé+K; sin &),
H = zz : ;q3 e”“i(;rl;zrsin ©, h,=q (cos - 2) (K,sin & - K;cosé),
1 1 +ike + (k) h,=g’cos# (K,cos¢+K; siné), hy=1. (12

Ep = _p+_2q3 Tsm ¢ [The scattered fieldS) yields additional termg*cos 6(K?
+K?) in g;. This term has no important influence on the
Kr phase portrait.
HY = +2 eIkr ()2 COS 0 Cos¢. (7) Following Ref. 24 we use notatiofe,—1)/(gp+2) =K,
(kr) +iK;, and é=gp(cos #-1). In regions far from the particle,
Within the far-field region, wherkr>1, Egs.(7) produce  where p>1, Eq. (10) yields parallel Poynting vector lines
the usual fields for a dipole approximatigsee, e.g., Egs. with conserved coordinate&=p sin §=const. The picture
(88) in Chap. 14 of Ref. L However we are interested in the with the field lines according to E¢Q) is presented in Fig. 3.
near-field region wherkr can be of the same order of mag- This picture presents the phase portrait of the field lines with
nitude as the size parameitgr one singular point of the saddle tygénother singular point
The Poynting vectoS=(c/4w)E X H specifies the mag- is situated inside the particle. This point is, in fact, fictive
nitude and direction of the rate of transfer of electromagnetidecause Poynting vector inside the particle is given by a
energy at all points of spacdé3? The total time-averaged different differential equation. Nevertheless one should re-
Poynting vector can be written as member about this point just to escape confusion with a
variation of the Poincare indexThis saddle pointhereinaf-
(9 =(S) + (V) + (S ® ter referred to as the Bohren saddle ppistsituated behind
where the particle atx=0 andz=2.97. The separatrix that goes
thought this point separates different types of field lines. All
_c . * L the field lines under the separatrix enter the particle. A simi-
S SwRe(E XHD, (S)= Re(E < H ) lar situation is typical for the field lines of a point charge
moving in a constant electric fielgee Fig. 1-Fig. 3 in Ref.
c . . 4).
(S = QTRe(Ei X Hg+EsX Hj). The field lines which enter the particle correspond to the
radial component of the Poynting vectorrata. Under the
Here(S) is the Poynting vector of the incident field and Bohren approximation the value of the field enhancement is
(Sy that of the scattered fieldS.,, can be interpreted as the given by

p~

term which arises because of the interaction between the in- <S(6)>
cident and scattered fields. In ttex plane (¢=0), the ¢ -cosé (- 1 +u.osé—ugsin €),
component of vectofS) is zero and the field lines are de- (S):
scribed by the solutions to the differential equation )
=(1=g9K; +aK; +q(K; — gK;)cos 6,
dr _ (S ©
do (S, Us= K, - (1 -g)K; +q(K, +gKj)cos 6. (13
Bohrerf* considers that the Poynting vector related to the On the right part of Fig. 3 we presented these radial field

scattered field does not affect E@) because ofS)q=qP. lines (lengths are proportional t§) that enter the particle
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180

FIG. 3. Field lines of the Poynting vector found from EdO) in the regions around a small particle with a size paramgted.3 and
permittivity e,=—2+0.2i. On the right part of the figure the arrows present the radial component of the Poynting vector which enters the
particle according to Eq13). Lengths of the arrows are proportional to tBevalue.

from all directions, from the front and from the backside and termsEY%q° [and similar terms in magnetic field
(“shadow” region. H2(g%)] are given in the Appendix.
ComparingE, components in Eq(7) and Eq.(Al) for
small g and &” (with e,=-2+ie") one can find
I1l. FIELD LINES OF THE POYNTING VECTOR BEYOND |Eé(q5)/Eé(q3)| ~2.4 q2/8”_ It means that smaﬂz value can
THE DIPOLE APPROXIMATION be compensated by an even sma#fevalue. Forg=0.3 both
) ) ] ] ) terms yield the same contribution &t=0.22. It means that
Itis clear that with an increasing value of the size paramjring the approach from dissipative damping to nondissipa-
eterq one should take more than one term within the Mieyjye damping the dipole approximatigwith g° terms only
series to reach a desirable accuracy. The recommended nufa-jnsyfficient. Thus we look for the next term in the expan-
ber of terms as given in Ref. 2 is,=q+4.3g3+1. It gion.
means that the “true” Poynting field pattern should be calcu-
lated with sufficient order of scattered partial waves, e.g., for
g=0.3 one should take four terms. In Fig. 4 we present the
distribution of the Poynting vector componesyt within the 10
Xy plane atz/a=1 (at the top of particleand z/a=-1 (be- .
hind the particle at the “shadow” regipnCalculations are @
performed withq=0.3 and other parameters are the same as .
in Fig. 3. All the necessary terms within the Mie series are

taken into account. Figure 4 demonstrates an evident contra 0 Legt 42
diction with the flux shown in Fig. 3. Namely, in the regions 2 -1 ¢ 5 27 %\a
near the centex=y=0 the energy flux enters the particle Xa

through the input windowl [Fig. 4(a)] and leaves the par- & —100

ticle through the dutput window [Fig. 4(b)]. The discrep- 1
ancy between Figs. 3 and 4 looks like a paradox, which
demonstrates that the dipole approximation is not applicableg ©
for a small particle.

To examine the influence of higher order partial waves,
we take the second term within the Mie series and analyze = -27
the effect of the next small term in the field expansion. For wa (b)
this purpose one should consider the fields with terms pro-
portional tog°. These contributions arise from the first and  FIG. 4. (Color onling Distribution of thez-component of the
second terms within the Mie series and one may WE®  Poynting vector within thexy-plane at(a) z/a=-1 (plane for in-
=EXq® +E%(q°) +E2(q®). TermsEY(q® are given by Eq(7)  coming radiation and(b) z/a=1 (plane for outgoing radiation

-1.0
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FIG. 5. (Color onling The same as in Fig. 3,
but with the inclusion ofg® terms for the scat-
tered wave. Inset demonstrates 3-D phase trajec-
tories near the saddle-focus point.

N OO R WN A O a2 NW A OO N
SRR

180

The laborious task to derive the differential equati{®  distribution of these fluxes is controlled by separatrices from
with scattered field$7), (A1), and(A2) was done with the the Bohren saddle point. In the three-dimensiqBaD) case
help of “MATHEMATICA " software33 Within thexzplane(i.e., it can be seen that these points are the saddle-focuses, i.e.,
©=0) this equation is presented in the form of H40), the energy comes from perpendicular directions as it is
where the numeratoF(”“mEEﬁ:Oukpk and denominator Sshown in Fig. 4(inse). In fact, similf_ir optical vortices are
Fden=3 ok are given by the fourth order of polynomials known for the case of the speckle field produced by the in-

(with respect top). This equation is also presented in the terference of a plane wave with a Gaussian béam.
Appendix. The natural question arises: is this phase portrait stable or

The field pattern according to this equation is shown inwill it change further when the higher-order partial waves are

Fig. 5. One can see that a “small perturbation” related tc}aken into account. An analytical equation for this case be-

- .. comes too complicated but we can easily analyze this prob-
B ks B catle ot ko asa i umerically Afe seris ofclctlations 0.3 and
on the phase plane =0 and z=4.28. Nevertheless the €”=0.2 we found that phase portrait in Fig. 5 is also unstable.

. i . > It becomes stablgi.e., it does not change further qualita-
behavior of separatrices that crossed this saddle point is nOY?(/er) when the number of terms within the Mie series is

completgly different. Moreover _five_ additional singular equal to four. This stable pattern is presented in Fig).6
points arise on the phase portrait in Fig. 5: three saddles anfine can see that this picture is quite simple; it contains the
two foci [we changed the Poincare index by 2 during bifu-jnput and output windows for energy flux and waves, which
racation(because of the singular point inside the parjicle present fluxes emitted by plasmon. In fact we expect a simi-
Two new saddle pointsat z=0 andx=+3.92 control the |ar picture from the general physical consideration. It is in-
flux, which enters the particle. Only field lines under separateresting to note that down-directed fluxes of plasmon emis-
trices from these saddle points enter the particle. As a resufion are concentrated in the surrounding of xzeplane. In
the energy enters the particle through a limited portion ofthe yzplane[see in Fig. )] all energy fluxes are directed
surface (“input window) instead of the whole surface as up.
shown in Fig. 3. The third saddle point behind the particle According to catastrophe theo2the number of terms
(situated close to the surfacexat0 andz=1.25 introduces which one should take into account within the polynomials
the separatrix that separates field lines emitted and realin the right hand part of Eq10) should satisfy the principal
sorbed by the particle. This energy flux corresponds to thef “structural stability,” i.e., the phase portrait should not
field that is emitted by plasmon in the case of a nondissipachange qualitatively with the addition of small perturbations
tive damping effect. It is interesting that this field is localized arising from the higher-order terms of the Mie series. Natu-
in a small region that is comparable with the particle size. rally, a sufficient number of terms depends on thande,,
Two foci (“energy vortices) are situated symmetrically values.
(x=%2.25 at a distancez=2.48 behind the particle. They Performing calculations based on an exact Mie solution
present the energy sources for the field lines in surroundingnd with an accuracy of expansion higher tigfone should
regions. Some of these field lines go to the particle and othtake into account the field flu% in Eqg. (8), related to the
ers go to the shadow region behind the partiatze>4). The  scattered wave. We found that with<®"” <1 the number of
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180
(): Surface-input window (B): Surface-output window

FIG. 6. (Color onling (a) The field lines of the Poynting vector in thxe-plane calculated from the Mie theory for a particle with a size
parameteq=0.3 and permittivitys,=—2+0.2i. The number of terms for the calculation was taken according,tg=q+4.3 g3+1. The
surface-input window and surface-output window can be s@grField lines for the same parameters but in ytzeplane.

terms given by ..=g+4.3qY3+1 satisfies the condition of type as Fig. 6 with symmetry between the input and output
phase portrait stability. In Fig. 7 one can see variations of thdields. In exact plasmon resonance-2 (Fig. 8 g the scat-
input window for the energy flux. As” decreases, the ab- tering cross-section reaches its maximal value, which is not
sorption cross-section of the particle increases while the ininfinite. Out of resonancgFig. 8 b) the picture is similar, but
put window shrinks. On the contrast, the output window isWith a smaller cross-section. Negativ@own-directed! flux
almost fixed for small values of". emitted by plasmon is confined by a “banana’- shaped three-
A few stable field patterns were identified fq=0.3 and ~ dimensional surface. We call these fluxeibelsky ears

¢"within the range & &” < 1. Patterns in Fig. 8 illustrate the because they correspond to the nondissipative damping

25 ; .

energy fluxes wher”=0. These patterns are of the sameeffect™ The cross-section of this energy fI.ux structure py the
xy-plane(through the particle center at0) is shown in Fig.

9

0 .

To analyze transforms on phase portraits we use the stan-
dard methods of the theory of nonlinear oscillati8h&irst
we search for the singuldstationary pointsr ¢, 6;, which
are the roots of equations for zero-isoclin€Xr, 6)),=0 and
(S(r, 6)),=0. These roots depend on parametgrand &".
Solutionr=r¢(&") for q=0.3 is presented in the central port
of Fig. 10. On the right picture the trajectories of the singular
points on thexzplane with a variation ot” parameter are
shown. One can see along thiéparameter the regions with
a different number of singular points.

() The first region B<&”<0.2892 corresponds to a sin-
gular rootp=rg/a. This value varies from 3.4 to 2.1 within
the discussed regioand continues to the particle surface
p=1with higher values o0§”). This root however is degener-
ated; it corresponds to two different valuesff On the right
picture in Fig. 10 the trajectories of these singular points start
at valuesx/a=+3.4 and continue to particle surfag¢ehich
they reach ats”=0.58. Within the first region the phase

|-— 180 — portrait contains two saddlgsee phase portraits on the top
Absorption Cross-section part of Fig. 10. This phase portrait is similar to those shown
in Fig. 8. Separatrices within the phase portrait clearly indi-

FIG. 7. (Color onling Variations in the surface-input window cate the regions with input and output windows and the re-
and surface-output windowin the xz-plane for a particle with a ~ gions with plasmon emission-reabsorption flyxes
size paramete=0.3 andes,=-2+ic” wheres” ranges from 10 to (Il The second region with 0.2892¢” <0.322 is char-
0.2. acterized by three roots with differept values. An upper
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FIG. 8. Field lines in thexzplane for a particle with a size parametgr0.3 and permittivitye”"=0. (a) ¢’ =-2 (plasmon resonangeb)
&' =-1 (off-plasmon resonange

(degenerateroot continues trajectories of saddles within thefocus. The saddle point continues the branch of the roots
first region and two additional roots move along thexis = which moves along the z-axes, while the branch with focus-
(x=0); see the right picture in Fig. 10. These points arisetype singular points is degenerated, it corresponds to two
above the surface a/a=1.37 and then move in different unstable foc(saddle-focus in 3-D space, the energy comes to
z-directions. The “intermediate” root which corresponds tothis point from the directions perpendicular to the picjure
an unstable nodésaddle-node in 3-D space, the energyOn the right picture Fig. 10 the trajectories of these singular
comes to this point from directions perpendicular to the picpoints correspond to two arcs above the particle, they con-
ture) moves up. The root with the smallgstvalue is of the tinue till the particle surfacéwhich they reach at”=0.54).
saddle-type; it moves down along tkexis and reaches the The typical phase portrait for this region is presented in Fig.
particle surface at”=0.322. One can see a typical phaselO for ¢”=0.37. The behavior of fluxes in the vicinities of
portrait ate”=0.3 on the upper part of Fig. 10. The existencefoci is similar to optical vortices, which were analyzed in
of the saddle point singularities in wave fields is well knownmany papers; see, e.g., Refs. 34, 39, and 40. But once again
within the theory of the wave front dislocatiofs®® The these singularities were previously discussed for the distribu-
only difference is that these singularities were previously distion of an electric field while we consider the distribution of
cussed for the distribution of electric field while we considerthe Poynting vector field. With an increase of &hparam-

the distribution of the energy flux. eter the foci move to the surfaggvhich they reach at”

(Il The third region with 0.322 ¢” <0.54 is also char- =0.54). The phase portrait at'=0.48 illustrates this motion.
acterized by three roots with differept values. But these (IV) The fourth region with 0.54.¢” <0.58 is character-
roots are qualitatively different from the second region. Atized by three saddle type points. The phase portraitefor
£"=0.322 one saddle point disappedesters into the par- =0.55 is shown at the bottom of Fig. 10. When the foci from
ticle) while the node point is converted into the saddle andegion Il enter the particle one can see on the top of the
particle an emission—reabsorption process for plasmon.

(V) At &”>0.58 two side’s saddles from region IV dis-
appear and the phase portrait has a single saddle point above
the particle. Thus, for big dissipation we return to the Bo-

-2
+ 13
11 e - |-24 hren’s picture of flux, similar to those in Fig. 3.
3 One can see that an energy flux for a small particle has a
8 01 ( ) number of bifurcations in the vicinity of plasmon resonance
14 e'=-2 with variation of dissipation parametef. All of
+

20
34 9

these bifurcations in the vector fields are quite general, simi-

21 lar bifurcations were found at wave front dislocations in the

-3 distribution of electric vector fielde.g. sadd|&® focus#39:40
e nodé?l). It is easy to verify that the Poynting vector fulfills
3 -2 4 0 1 2 3 the conservation law

x/a

) div S=0; (14)
FIG. 9. (Color onling Contour plot of theS, component of the
energy flux in arxy-plane az=0. Negative energy flugmarked by  this follows from the Maxwell equations. Thus vector field
the minus signsis confined within two “tubes.” Si=curl A(r, 6, ¢) fulfills Eq. (14) with arbitrary vectorA
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Ime=0.3 Ime=0.37

at q=0.30 | 2
3'0: 1 1 71\
L 2-5; g 0 /// \\\
I [ )
a 20} N 1 k /
[ 0.2892 \ ;
i ~ e 1
1.5_ NN S=xmnnaEi 2
[ \ 0.58 ]
1.0l A D 1 -
0.0 0.1 02 0.3 0.4 05 1 2 3
Im(e)
Ime=0.6
0
3,
2 60
1
0,
14
2 120
3
180

FIG. 10. (Color onling Field lines in thexz-plane for a particle with plasmon resonance-—2 and size parameter=0.3. The central
part of the picture presents stationary points and their trajectories ve&tsus

=A(r,0,¢). Another part is scalar fieldi(r, 6, ¢), which In conclusion, we have to add that the scattering of light
should fulfill the Laplace equatiom\u=0. Then vectorS, by a small particle with plasmon resonance is attractive for
=gradu(r, 8,¢) also fulfills Eq. (14). The construction of applications in nanopatterning. For example, the nondissipa-
suitable vectors through electric and magnetic fields is quitdive case is attractive for the generation of big electric and
complicated. For the case of cylindrical symmetry this prob-magnetic fields under the particle with plasmon resonance.
lem was discussed in Ref. 42. Forq = 0.3 ands”"=0 maximal value of the-component of
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the Poynting vector under the particle can re&h=13,  with nondissipative damping would be attractive for many
while enhancements of corresponding electric and magnetigpplications. It permits us to generate sufficiently high elec-
fields areE?~ 200 andH?~ 15. tric and magnetic fields in nanoscale around the particle in
the near-field region.
IV. CONCLUSION
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portrait for the energy flux was reached when the number of

terms were given by ,.,=q+4.3¢3+1. The nondissipative APPENDIX:

case withe”=0 is characterized by input and output windows

for the energy flux on the surface of the particle. With higher Here we present the terms proportionalgfoin electric
dissipation one can see a complex pattern of the energy flugnd magnetic fields. These contributions arise from the first
in the vicinity of the particle. With big dissipation the energy and second terms within the Mie serie&®=E%(q®

flux enters the particle from any direction, i.e. one returns torEX(°) +E*(q®). Terms EX(q®) are given by Eq.(7) and
the picture, typical for the dipole approximation. The casetermsE>?q®) are given by

6 e,—-1 1 —ikr
El(g®) = ——2 5 glkr - 2)sin 6 cos o,
() 5(op + 22 (k) (ep,—2) @
i g,—1 . ., 3-3kr-(kr)?
EXQ?) = 5> G sin 26 cos ¢,

22e,+ 34 (kr)*

1 g,—-1 .. [ikr +(kn?] (g, +2)%+ 19~ 1 +ikr + (kr)?](s, - 2)cos 6
Eé(qS) — % p qselkr p p cos o,

(e + 27 (kn?

1e,-1 ik 6i — 6kr + 3i(kr)?+ (kr)®

EXq®) = » ,
o) 626, + 30 (k) cos X cos ¢
15 1 ep=1 o 4 18- 1+ikr +(kr)?](ep = 2) +[ikr + (kn)?] (g5 + 2)*c0S 6 _
Eq(q) =~ 0 € 3 sin o,
30(ep+2) (kr)
1e,-1 . . —6i—6kr+3i(kr)?+ (kr)® _
EX(gP)=-==2 5 gk cos d sin ¢. Al
2(a°) 625, + 3 kn* ¢ (AL)
Similar terms in magnetic fielé%q®) are given by
e,—1 . . 1-ikr | )
HY(o®) = p15 o X (a7 S0 6sing, Hq® =0,
1 e,-1 .. Agikr + (kr)?](g, = 2) +[- 1 +ikr + (kr)?](e, + 2)°cOS 6 |
H(gf) = — —2B 5k P P sin o,
A= 300, + 2720 © (kn? ne
1e,-1 . . —3+3kr+(kr)? .
H3(q®) = = —P——q° e cos 6 sin o,
62e,+3 (kr)®
HL(q) = 1 g-1 5eikr[— 1 +ikr + (kn)?](e, + 2)% + 1gikr + (kr)?](e, — 2)cOS ecos

30(s, + 2)2 (kn? ¢
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H2(oF) =
‘P(q) 62s,+3

Within the xzplane(i.e., ¢=0) differential equatior(9) is
presented in the form of Eq10), where the numerator
Fum =% up* and denominatoF @ =3¢ w,p* are given
by the fourth order of polynomialéwith respect top). We
present coefficients for the case wherg=—2+ie". Strokes
in ¢” are omitted within the long formulagA3) and (A4).
The coefficients for the numerator are given by
Up = Upq + U30°,

_ 1 _ 0, 22
Up=Upd, Up=uU;+uiQgs,

uz=usg?+usg’, us=1. (A3)

Here termauf are the coefficients at different ordersqf
They are equal to

ug = p cog26)secH 5s cosé— (3 + 2:?)sin &],
0 3.
U;=—-Ccosé——sin ¢,
&

ul= L(3uclcos§ +gUgsin &),

3082

-72+572

Ugp = +5&2(3 + 26%)(2 + cos#)cog26)sech,

126 +&2

Ug = + 75¢%(2 + cos@)cog26)sech,

) o 3 _
u2=2co§§ —;cos§+ siné|,

0 .
5= chos’-asec 0 & UC0S &+ 3 Ugsin §),

u
15

g%+ 126 cosf

U = — - 75¢%c0926),

Ugp =

- &2+ 6(— 12 +&?)cos f .
p

5¢%(3 + 2:%)codq26),
0 3
ui=2 co§5(cos§+ ;sin g) ,

p 0 .
us= Ecoszésec 0( UsCOS &+ & Ugsin §),

le-1 ¢ eikr—3+3ikr+(kr)2

cos 29 coS ¢. (A2)

(kr)®

3
U = 5[_ g2+ 6(— 12 +&?)cos 6] + 5e2(3 + 2¢2)cog26),

_ &2+ 126 cosf

Ugg + 25¢2c0926),

wherep=(1+4g?)™L.
Coefficientsw, for denominator have a similar form:
— — 0 — L
Wo=Wgd, Wp=WE WIS, Wp = wig + Wi,

Uz =wWi02 +wag®, w,=1. (A4)

wherevv}‘ functions are presented by
wg =3 p cos g 5s cos &+ (3 + 2s9)sin &],

0 6.
Wi =2 cosé+ —sin §,
&

L(3 W COSE+ e Wy SIN ),

w2 =-—
17 3062

Wg = 144 + 5632 - 52¢* + 5¢2(3 + 2¢2)[- 6 cosé
+C0g20)],

+75¢7— 6 cosf+ cog26)],
) < 3 . )

w; = (=2 +cosf)| - ;cos§+ sin &1,

W= —— (= & WepC0S &+ 3 Wesin &),

+6(21 + 5%?)cos 6+ 75 £2c0926),

W = 144 + 5632 - 52 &% + 4(- 18 - 7&2 + £*)cos ¢
+562(3 + 26%)c0920),

W3 = cos 0(cos§+ g’sin 5) ,
&
4

p :
W = @( W3COS €+ & WgsSin §),

3
Weg = B[_ g2+ 6(— 12 +&?)cos 6] + 5¢2(3 + 2:%)coq26),
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&2+ 126 cosf
=4

W 25¢2c0926).

PHYSICAL REVIEW B 70, 035418(2004)

Substituting(A3) and (A4) into the formulas for numera-
tor F"™ and denominatoF“®” one can derive differential
equation for the field lines.
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